Charge-transfer complex

Last updated

Structure of one part of one stack of the charge-transfer complex between pyrene and 1,3,5-trinitrobenzene. PYRTNB03.png
Structure of one part of one stack of the charge-transfer complex between pyrene and 1,3,5-trinitrobenzene.

In chemistry, charge-transfer (CT) complex, or electron donor-acceptor complex, describes a type of supramolecular assembly of two or more molecules or ions. The assembly consists of two molecules that self-attract through electrostatic forces, i.e., one has at least partial negative charge and the partner has partial positive charge, referred to respectively as the electron acceptor and electron donor. In some cases, the degree of charge transfer is "complete", such that the CT complex can be classified as a salt. In other cases, the charge-transfer association is weak, and the interaction can be disrupted easily by polar solvents.

Contents

Examples

Electron donor-acceptor complexes

A number of organic compounds form charge-transfer complex, which are often described as electron-donor-acceptor complexes (EDA complexes). Typical acceptors are nitrobenzenes or tetracyanoethylene (TCNE). The strength of their interaction with electron donors correlates with the ionization potentials of the components. For TCNE, the stability constants (L/mol) for its complexes with benzene derivatives correlates with the number of methyl groups: benzene (0.128), 1,3,5-trimethylbenzene (1.11), 1,2,4,5-tetramethylbenzene (3.4), and hexamethylbenzene (16.8). [2]

1,3,5-Trinitrobenzene and related polynitrated aromatic compounds, being electron-deficient, form charge-transfer complexes with many arenes. Such complexes form upon crystallization, but often dissociate in solution to the components. Characteristically, these CT salts crystallize in stacks of alternating donor and acceptor (nitro aromatic) molecules, i.e. A-B-A-B. [3]

Dihalogen/interhalogen CT complexes

Early studies on donor-acceptor complexes focused on the solvatochromism exhibited by iodine, which often results from I2 forming adducts with electron donors such as amines and ethers. [4] Dihalogens X2 (X = Cl, Br, I) and interhalogens XY(X = I; Y = Cl, Br) are Lewis acid species capable of forming a variety of products when reacted with donor species. Among these species (including oxidation or protonated products), CT adducts D·XY have been largely investigated. The CT interaction has been quantified and is the basis of many schemes for parameterizing donor and acceptor properties, such as those devised by Gutmann, Childs, [5] Beckett, and the ECW model. [6]

Many organic species featuring chalcogen or pnictogen donor atoms form CT salts. The nature of the resulting adducts can be investigated both in solution and in the solid state.

In solution, the intensity of charge-transfer bands in the UV-Vis absorbance spectrum is strongly dependent upon the degree (equilibrium constant) of this association reaction. Methods have been developed to determine the equilibrium constant for these complexes in solution by measuring the intensity of absorption bands as a function of the concentration of donor and acceptor components in solution. The Benesi-Hildebrand method, named for its developers, was first described for the association of iodine dissolved in aromatic hydrocarbons. [7]

In the solid state a valuable parameter is the elongation of the X–X or X–Y bond length, resulting from the antibonding nature of the σ* LUMO. [8] The elongation can be evaluated by means of structural determinations (XRD) [9] and FT-Raman spectroscopy. [10]

A well-known example is the complex formed by iodine when combined with starch, which exhibits an intense purple charge-transfer band. This has widespread use as a rough screen for counterfeit currency. Unlike most paper, the paper used in US currency is not sized with starch. Thus, formation of this purple color on application of an iodine solution indicates a counterfeit.

TTF-TCNQ: prototype for electrically conducting complexes

Edge-on view of portion of crystal structure of hexamethyleneTTF/TCNQ charge transfer salt, highlighting the segregated stacking. SegStackEdgeOnHMTFCQ.jpg
Edge-on view of portion of crystal structure of hexamethyleneTTF/TCNQ charge transfer salt, highlighting the segregated stacking.
End-on view of portion of crystal structure of hexamethyleneTTF/TCNQ charge transfer salt. The distance between the TTF planes is 3.55 A. SegStackEndOnHMTFCQ.jpg
End-on view of portion of crystal structure of hexamethyleneTTF/TCNQ charge transfer salt. The distance between the TTF planes is 3.55 Å.

In 1954, charge-transfer salts derived from perylene with iodine or bromine were reported with resistivities as low as 8 ohm·cm. [3] In 1973, it was discovered that a combination of tetracyanoquinodimethane (TCNQ) and tetrathiafulvalene (TTF) forms a strong charge-transfer complex referred to as TTF-TCNQ. [12] The solid shows almost metallic electrical conductance and was the first-discovered purely organic conductor. In a TTF-TCNQ crystal, TTF and TCNQ molecules are arranged independently in separate parallel-aligned stacks, and an electron transfer occurs from donor (TTF) to acceptor (TCNQ) stacks. Hence, electrons and electron holes are separated and concentrated in the stacks and can traverse in a one-dimensional direction along the TCNQ and TTF columns, respectively, when an electric potential is applied to the ends of a crystal in the stack direction. [13]

Superconductivity is exhibited by tetramethyl-tetraselenafulvalene-hexafluorophosphate (TMTSF2PF6), which is a semi-conductor at ambient conditions, shows superconductivity at low temperature (critical temperature) and high pressure: 0.9 K and 12 kbar. Critical current densities in these complexes are very small.

Mechanistic implications

Many reactions involving nucleophiles attacking electrophiles can be usefully assessed from the perspective of an incipient charge-transfer complex. Examples include electrophilic aromatic substitution, the addition of Grignard reagents to ketones, and brominolysis of metal-alkyl bonds. [14]

See also

Related Research Articles

<span class="mw-page-title-main">Lewis acids and bases</span> Chemical bond theory

A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any species that has a filled orbital containing an electron pair which is not involved in bonding but may form a dative bond with a Lewis acid to form a Lewis adduct. For example, NH3 is a Lewis base, because it can donate its lone pair of electrons. Trimethylborane [(CH3)3B] is a Lewis acid as it is capable of accepting a lone pair. In a Lewis adduct, the Lewis acid and base share an electron pair furnished by the Lewis base, forming a dative bond. In the context of a specific chemical reaction between NH3 and Me3B, a lone pair from NH3 will form a dative bond with the empty orbital of Me3B to form an adduct NH3•BMe3. The terminology refers to the contributions of Gilbert N. Lewis.

<span class="mw-page-title-main">Excimer</span> Excited dimeric molecule containing a noble gas

An excimer is a short-lived polyatomic molecule formed from two species that do not form a stable molecule in the ground state. In this case, formation of molecules is possible only if such atom is in an electronic excited state. Heteronuclear molecules and molecules that have more than two species are also called exciplex molecules. Excimers are often diatomic and are composed of two atoms or molecules that would not bond if both were in the ground state. The lifetime of an excimer is very short, on the order of nanoseconds.

In chemistry, electron deficiency is jargon that is used in two contexts: chemical species that violate the octet rule because they have too few valence electrons and species that happen to follow the octet rule but have electron-acceptor properties, forming donor-acceptor charge-transfer salts.

Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in the form of molecular crystals or amorphous thin films. In general, they are electrical insulators, but become semiconducting when charges are injected from appropriate electrodes or are introduced by doping or photoexcitation.

<span class="mw-page-title-main">Radical anion</span> Free radical species

In organic chemistry, a radical anion is a free radical species that carries a negative charge. Radical anions are encountered in organic chemistry as reduced derivatives of polycyclic aromatic compounds, e.g. sodium naphthenide. An example of a non-carbon radical anion is the superoxide anion, formed by transfer of one electron to an oxygen molecule. Radical anions are typically indicated by .

In chemistry, a non-covalent interaction differs from a covalent bond in that it does not involve the sharing of electrons, but rather involves more dispersed variations of electromagnetic interactions between molecules or within a molecule. The chemical energy released in the formation of non-covalent interactions is typically on the order of 1–5 kcal/mol. Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects.

<span class="mw-page-title-main">Diazonium compound</span> Group of organonitrogen compounds

Diazonium compounds or diazonium salts are a group of organic compounds sharing a common functional group [R−N+≡N]X where R can be any organic group, such as an alkyl or an aryl, and X is an inorganic or organic anion, such as a halide. The parent compound where R is hydrogen, is diazenylium.

In chemistry, stacking refers to superposition of molecules or atomic sheets owing to attractive interactions between these molecules or sheets.

An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound. Electron acceptors are oxidizing agents.

The uranyl ion is an oxycation of uranium in the oxidation state +6, with the chemical formula UO2+
2
. It has a linear structure with short U–O bonds, indicative of the presence of multiple bonds between uranium and oxygen. Four or more ligands may be bound to the uranyl ion in an equatorial plane around the uranium atom. The uranyl ion forms many complexes, particularly with ligands that have oxygen donor atoms. Complexes of the uranyl ion are important in the extraction of uranium from its ores and in nuclear fuel reprocessing.

<span class="mw-page-title-main">Tetracyanoquinodimethane</span> Organic compound with formula C12H4N4

Tetracyanoquinodimethane (TCNQ) is an organic compound with the chemical formula (N≡C−)2C=C6H4=C(−C≡N)2. It is an orange crystalline solid. This cyanocarbon, a relative of para-quinone, is an electron acceptor that is used to prepare charge transfer salts, which are of interest in molecular electronics.

<span class="mw-page-title-main">Tetrathiafulvalene</span> Organosulfuric compound with formula C6H4S4

Tetrathiafulvalene (TTF) is an organosulfur compound with the formula 2. Studies on this heterocyclic compound contributed to the development of molecular electronics. TTF is related to the hydrocarbon fulvalene, (C5H4)2, by replacement of four CH groups with sulfur atoms. Over 10,000 scientific publications discuss TTF and its derivatives.

<span class="mw-page-title-main">Molecular solid</span> Solid consisting of discrete molecules

A molecular solid is a solid consisting of discrete molecules. The cohesive forces that bind the molecules together are van der Waals forces, dipole–dipole interactions, quadrupole interactions, π–π interactions, hydrogen bonding, halogen bonding, London dispersion forces, and in some molecular solids, coulombic interactions. Van der Waals, dipole interactions, quadrupole interactions, π–π interactions, hydrogen bonding, and halogen bonding are typically much weaker than the forces holding together other solids: metallic, ionic, and network solids.

In chemistry, a halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. Like a hydrogen bond, the result is not a formal chemical bond, but rather a strong electrostatic attraction. Mathematically, the interaction can be decomposed in two terms: one describing an electrostatic, orbital-mixing charge-transfer and another describing electron-cloud dispersion. Halogen bonds find application in supramolecular chemistry; drug design and biochemistry; crystal engineering and liquid crystals; and organic catalysis.

In chemistry, π-effects or π-interactions are a type of non-covalent interaction that involves π systems. Just like in an electrostatic interaction where a region of negative charge interacts with a positive charge, the electron-rich π system can interact with a metal, an anion, another molecule and even another π system. Non-covalent interactions involving π systems are pivotal to biological events such as protein-ligand recognition.

Unlike its lighter congeners, the halogen iodine forms a number of stable organic compounds, in which iodine exhibits higher formal oxidation states than -1 or coordination number exceeding 1. These are the hypervalent organoiodines, often called iodanes after the IUPAC rule used to name them.

Cyclobis(paraquat-<i>p</i>-phenylene) Chemical compound

Cyclobis(paraquat-p-phenylene) belongs to the class of cyclophanes, and consists of aromatic units connected by methylene bridges. It is able to incorporate small guest molecule and has played an important role in host–guest chemistry and supramolecular chemistry.

<span class="mw-page-title-main">Pi-stacking</span> Attractive interactions between aromatic rings

In chemistry, pi stacking refers to the presumptive attractive, noncovalent pi interactions between the pi bonds of aromatic rings. According to some authors direct stacking of aromatic rings is electrostatically repulsive.

<span class="mw-page-title-main">Contorted aromatics</span> Hydrocarbon compounds composed of rings fused such that the molecule is nonplanar

In organic chemistry, contorted aromatics, or more precisely contorted polycyclic aromatic hydrocarbons, are polycyclic aromatic hydrocarbons (PAHs) in which the fused aromatic molecules deviate from the usual planarity.

<span class="mw-page-title-main">Triboracyclopropenyl</span>

The triboracyclopropenyl fragment is a cyclic structural motif in boron chemistry, named for its geometric similarity to cyclopropene. In contrast to nonplanar borane clusters that exhibit higher coordination numbers at boron (e.g., through 3-center 2-electron bonds to bridging hydrides or cations), triboracyclopropenyl-type structures are rings of three boron atoms where substituents at each boron are also coplanar to the ring. Triboracyclopropenyl-containing compounds are extreme cases of inorganic aromaticity. They are the lightest and smallest cyclic structures known to display the bonding and magnetic properties that originate from fully delocalized electrons in orbitals of σ and π symmetry. Although three-membered rings of boron are frequently so highly strained as to be experimentally inaccessible, academic interest in their distinctive aromaticity and possible role as intermediates of borane pyrolysis motivated extensive computational studies by theoretical chemists. Beginning in the late 1980s with mass spectrometry work by Anderson et al. on all-boron clusters, experimental studies of triboracyclopropenyls were for decades exclusively limited to gas-phase investigations of the simplest rings (ions of B3). However, more recent work has stabilized the triboracyclopropenyl moiety via coordination to donor ligands or transition metals, dramatically expanding the scope of its chemistry.

References

  1. Rather, Sumair A.; Saraswatula, Viswanadha G.; Sharada, Durgam; Saha, Binoy K. (2019). "Influence of molecular width on the thermal expansion in solids". New Journal of Chemistry. 43 (44): 17146–17150. doi:10.1039/C9NJ04888J. S2CID   208752583.
  2. Foster, R. (1980). "Electron Donor-Acceptor Complexes". The Journal of Physical Chemistry. 84 (17): 2135–2141. doi:10.1021/j100454a006.
  3. 1 2 Goetz, Katelyn P.; Vermeulen, Derek; Payne, Margaret E.; Kloc, Christian; McNeil, Laurie E.; Jurchescu, Oana D. (2014). "Charge-Transfer Complexes: New Perspectives on an Old Class of Compounds". J. Mater. Chem. C. 2 (17): 3065–3076. doi:10.1039/C3TC32062F.
  4. Bent, Henry A. (1968). "Structural chemistry of donor-acceptor interactions". Chemical Reviews. 68 (5): 587–648. doi:10.1021/cr60255a003.
  5. Childs RF, Mulholland DL, Nixon A (1982). "Lewis acid adducts of α,β-unsaturated carbonyl and nitrile compounds. A nuclear magnetic resonance study". Can. J. Chem. 60 (6): 801–808. doi: 10.1139/v82-117 .
  6. Vogel GC, Drago RS (1996). "The ECW Model". Journal of Chemical Education. 73 (8): 701–707. Bibcode:1996JChEd..73..701V. doi:10.1021/ed073p701.
  7. H. Benesi, J. Hildebrand, A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons, J. Am. Chem. Soc. 71(8), 2703-07 (1949) doi:10.1021/ja01176a030.
  8. Aragoni, M. Carla; Arca, Massimiliano; Demartin, Francesco; Devillanova, Francesco A.; Garau, Alessandra; Isaia, Francesco; Lippolis, Vito; Verani, Gaetano (16 June 2005). "DFT calculations, structural and spectroscopic studies on the products formed between IBr and N,N′-dimethylbenzoimidazole-2(3H)-thione and -2(3H)-selone". Dalton Transactions (13): 2252–2258. doi:10.1039/B503883A. ISSN   1477-9234. PMID   15962045.
  9. Barnes, Nicholas A.; Godfrey, Stephen M.; Hughes, Jill; Khan, Rana Z.; Mushtaq, Imrana; Ollerenshaw, Ruth T. A.; Pritchard, Robin G.; Sarwar, Shamsa (30 January 2013). "The reactions of para-halo diaryl diselenides with halogens. A structural investigation of the CT compound (p-FC6H4)2Se2I2, and the first reported "RSeI3" compound, (p-ClC6H4)SeI·I2, which contains a covalent Se–I bond". Dalton Transactions. 42 (8): 2735–2744. doi:10.1039/C2DT31921G. ISSN   1477-9234. PMID   23229685.
  10. Arca, Massimiliano; Aragoni, M. Carla; Devillanova, Francesco A.; Garau, Alessandra; Isaia, Francesco; Lippolis, Vito; Mancini, Annalisa; Verani, Gaetano (28 December 2006). "Reactions Between Chalcogen Donors and Dihalogens/Interalogens: Typology of Products and Their Characterization by FT-Raman Spectroscopy". Bioinorganic Chemistry and Applications. 2006: 58937. doi: 10.1155/BCA/2006/58937 . PMC   1800915 . PMID   17497008.
  11. D. Chasseau; G. Comberton; J. Gaultier; C. Hauw (1978). "Réexamen de la structure du complexe hexaméthylène-tétrathiafulvalène-tétracyanoquinodiméthane". Acta Crystallographica Section B. 34 (2): 689. Bibcode:1978AcCrB..34..689C. doi:10.1107/S0567740878003830.
  12. P. W. Anderson; P. A. Lee; M. Saitoh (1973). "Remarks on giant conductivity in TTF-TCNQ". Solid State Communications . 13 (5): 595–598. Bibcode:1973SSCom..13..595A. doi:10.1016/S0038-1098(73)80020-1.
  13. Van De Wouw, Heidi L.; Chamorro, Juan; Quintero, Michael; Klausen, Rebekka S. (2015). "Opposites Attract: Organic Charge Transfer Salts". Journal of Chemical Education. 92 (12): 2134–2139. Bibcode:2015JChEd..92.2134V. doi:10.1021/acs.jchemed.5b00340.
  14. Kochi, Jay K. (1988). "Electron Transfer and Charge Transfer: Twin Themes in Unifying the Mechanisms of Organic and Organometallic Reactions". Angewandte Chemie International Edition in English. 27 (10): 1227–1266. doi:10.1002/anie.198812273.

Historical sources