Electron shell

Last updated

In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus. The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus. The shells correspond to the principal quantum numbers (n = 1, 2, 3, 4 ...) or are labeled alphabetically with the letters used in X-ray notation (K, L, M, ...). A useful guide when understanding electron shells in atoms is to note that each row on the conventional periodic table of elements represents an electron shell.

Contents

Each shell can contain only a fixed number of electrons: the first shell can hold up to two electrons, the second shell can hold up to eight electrons, the third shell can hold up to 18, continiuing as the general formula of the nth shell being able to hold up to 2(n2) electrons. [1] For an explanation of why electrons exist in these shells, see electron configuration. [2]

Each shell consists of one or more subshells, and each subshell consists of one or more atomic orbitals.

History

In 1913, Niels Bohr proposed a model of the atom, giving the arrangement of electrons in their sequential orbits. At that time, Bohr allowed the capacity of the inner orbit of the atom to increase to eight electrons as the atoms got larger, and "in the scheme given below the number of electrons in this [outer] ring is arbitrary put equal to the normal valency of the corresponding element". Using these and other constraints, he proposed configurations that are in accord with those now known only for the first six elements. "From the above we are led to the following possible scheme for the arrangement of the electrons in light atoms:" [3] [4]

Bohr's 1913 proposed configurations
ElementElectrons per shellElementElectrons per shellElementElectrons per shell
1194, 4, 1178, 4, 4, 1
22108, 2188, 8, 2
32, 1118, 2, 1198, 8, 2, 1
42, 2128, 2, 2208, 8, 2, 2
52, 3138, 2, 3218, 8, 2, 3
62, 4148, 2, 4228, 8, 2, 4
74, 3158, 4, 3238, 8, 4, 3
84, 2, 2168, 4, 2, 2248, 8, 4, 2, 2

The shell terminology comes from Arnold Sommerfeld's modification of the 1913 Bohr model. During this period Bohr was working with Walther Kossel, whose papers in 1914 and in 1916 called the orbits "shells". [5] [6] Sommerfeld retained Bohr's planetary model, but added mildly elliptical orbits (characterized by additional quantum numbers and m) to explain the fine spectroscopic structure of some elements. [7] The multiple electrons with the same principal quantum number (n) had close orbits that formed a "shell" of positive thickness instead of the circular orbit of Bohr's model which orbits called "rings" were described by a plane. [8]

The existence of electron shells was first observed experimentally in Charles Barkla's and Henry Moseley's X-ray absorption studies. Moseley's work did not directly concern the study of electron shells, because he was trying to prove that the periodic table was not arranged by weight, but by the charge of the protons in the nucleus. [9] However, because the number of electrons in an electrically neutral atom equals the number of protons, this work was extremely important to Niels Bohr who mentioned Moseley's work several times in his 1962 interview. [10] Moseley was part of Rutherford's group, as was Niels Bohr. Moseley measured the frequencies of X-rays emitted by every element between calcium and zinc and found that the frequencies became greater as the elements got heavier. This led to the theory that electrons were emitting X-rays when they were shifted to lower shells. [11] This led to the conclusion that the electrons were in Kossel's shells with a definite limit per shell, labeling them with the letters K, L, M, N, O, P, and Q. [4] [12] The origin of this terminology was alphabetic. Barkla, who worked independently from Moseley as an X-ray spectrometry experimentalist, first noticed two distinct types of scattering from shooting X-rays at elements in 1909 and named them "A" and "B". Barkla described these two types of X-ray diffraction: the first was unconnected with the type of material used in the experiment and could be polarized. The second diffraction beam he called "fluorescent" because it depended on the irradiated material. [13] It was not known what these lines meant at the time, but in 1911 Barkla decided there might be scattering lines previous to "A", so he began at "K". [14] However, later experiments indicated that the K absorption lines are produced by the innermost electrons. These letters were later found to correspond to the n values 1, 2, 3, etc. that were used in the Bohr model. They are used in the spectroscopic Siegbahn notation.

The work of assigning electrons to shells was continued from 1913 to 1925 by many chemists and a few physicists. Niels Bohr was one of the few physicists who followed the chemist's work [15] of defining the periodic table, while Arnold Sommerfeld worked more on trying to make a relativistic working model of the atom that would explain the fine structure of the spectra from a classical orbital physics standpoint through the Atombau approach. [4] Einstein and Rutherford, who did not follow chemistry, were unaware of the chemists who were developing electron shell theories of the periodic table from a chemistry point of view, such as Irving Langmuir, Charles Bury, J.J. Thomson, and Gilbert Lewis, who all introduced corrections to Bohr's model such as a maximum of two electrons in the first shell, eight in the next and so on, and were responsible for explaining valency in the outer electron shells, and the building up of atoms by adding electrons to the outer shells. [16] [4] So when Bohr outlined his electron shell atomic theory in 1922, there was no mathematical formula for the theory. So Rutherford said he was hard put "to form an idea of how you arrive at your conclusions". [17] [18] Einstein said of Bohr's 1922 paper that his "electron-shells of the atoms together with their significance for chemistry appeared to me like a miracle – and appears to me as a miracle even today". [19] Arnold Sommerfeld, who had followed the Atombau structure of electrons instead of Bohr who was familiar with the chemists' views of electron structure, spoke of Bohr's 1921 lecture and 1922 article on the shell model as "the greatest advance in atomic structure since 1913". [4] [20] [17] However, the electron shell development of Niels Bohr was basically the same theory as that of the chemist Charles Rugeley Bury in his 1921 paper. [21] [4] [22]

As work continued on the electron shell structure of the Sommerfeld-Bohr Model, Sommerfeld had introduced three "quantum numbers n, k, and m, that described the size of the orbit, the shape of the orbit, and the direction in which the orbit was pointing." [23] Because we use k for the Boltzmann constant, the azimuthal quantum number was changed to . When the modern quantum mechanics theory was put forward based on Heisenberg's matrix mechanics and Schrödinger's wave equation, these quantum numbers were kept in the current quantum theory but were changed to n being the principal quantum number, and m being the magnetic quantum number.

However, the final form of the electron shell model still in use today for the number of electrons in shells was discovered in 1923 by Edmund Stoner, who introduced the principle that the nth shell was described by 2(n2). Seeing this in 1925, Wolfgang Pauli added a fourth quantum number, "spin", during the old quantum theory period of the Sommerfeld-Bohr Solar System atom to complete the modern electron shell theory. [4]

Subshells

3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown). Atomic-orbital-clouds spdf m0.png
3D views of some hydrogen-like atomic orbitals showing probability density and phase (g orbitals and higher are not shown).

Each shell is composed of one or more subshells, which are themselves composed of atomic orbitals. For example, the first (K) shell has one subshell, called 1s; the second (L) shell has two subshells, called 2s and 2p; the third shell has 3s, 3p, and 3d; the fourth shell has 4s, 4p, 4d and 4f; the fifth shell has 5s, 5p, 5d, and 5f and can theoretically hold more in the 5g subshell that is not occupied in the ground-state electron configuration of any known element. [2] The various possible subshells are shown in the following table:

Subshell label Max electronsShells containing itHistorical name
s02Every shell sharp
p162nd shell and higher principal
d2103rd shell and higher diffuse
f3144th shell and higher fundamental
g4185th shell and higher (theoretically)(next in alphabet after f) [24]

Number of electrons in each shell

Each subshell is constrained to hold 4+ 2 electrons at most, namely:

Therefore, the K shell, which contains only an s subshell, can hold up to 2 electrons; the L shell, which contains an s and a p, can hold up to 2 + 6 = 8 electrons, and so forth; in general, the nth shell can hold up to 2n2 electrons. [1]

Shell
name
Subshell
name
Subshell
max
electrons
Shell
max
electrons
K1s22
L2s22 + 6 = 8
2p6
M3s22 + 6 + 10
= 18
3p6
3d10
N4s22 + 6 +
10 + 14
= 32
4p6
4d10
4f14
O5s22 + 6 +
10 + 14 +
18 = 50
5p6
5d10
5f14
5g18

Although that formula gives the maximum in principle, that maximum is only achieved (in known elements) for the first four shells (K, L, M, N). No known element has more than 32 electrons in any one shell. [25] [26] This is because the subshells are filled according to the Aufbau principle. The first elements to have more than 32 electrons in one shell would belong to the g-block of period 8 of the periodic table. These elements would have some electrons in their 5g subshell and thus have more than 32 electrons in the O shell (fifth principal shell).

Subshell energies and filling order

For multielectron atoms n is a poor indicator of electron's energy. Energy spectra of some shells interleave. Atomic orbitals as triangles.svg
For multielectron atoms n is a poor indicator of electron's energy. Energy spectra of some shells interleave.
The states crossed by same red arrow have same
n
+
l
{\displaystyle n+\ell }
value. The direction of the red arrow indicates the order of state filling. Aufbau Principle-en.svg
The states crossed by same red arrow have same value. The direction of the red arrow indicates the order of state filling.

Although it is sometimes stated that all the electrons in a shell have the same energy, this is an approximation. However, the electrons in one subshell do have exactly the same level of energy, with later subshells having more energy per electron than earlier ones. This effect is great enough that the energy ranges associated with shells can overlap.

The filling of the shells and subshells with electrons proceeds from subshells of lower energy to subshells of higher energy. This follows the n + ℓ rule which is also commonly known as the Madelung rule. Subshells with a lower n + ℓ value are filled before those with higher n + ℓ values. In the case of equal n + ℓ values, the subshell with a lower n value is filled first.

Because of this, the later shells are filled over vast sections of the periodic table. The K shell fills in the first period (hydrogen and helium), while the L shell fills in the second (lithium to neon). However, the M shell starts filling at sodium (element 11) but does not finish filling till copper (element 29), and the N shell is even slower: it starts filling at potassium (element 19) but does not finish filling till ytterbium (element 70). The O, P, and Q shells begin filling in the known elements (respectively at rubidium, caesium, and francium), but they are not complete even at the heaviest known element, oganesson (element 118).

List of elements with electrons per shell

The list below gives the elements arranged by increasing atomic number and shows the number of electrons per shell. At a glance, the subsets of the list show obvious patterns. In particular, every set of five elements (  electric blue) before each noble gas (group 18,   yellow) heavier than helium have successive numbers of electrons in the outermost shell, namely three to seven.

Sorting the table by chemical group shows additional patterns, especially with respect to the last two outermost shells. (Elements 57 to 71 belong to the lanthanides, while 89 to 103 are the actinides.)

The list below is primarily consistent with the Aufbau principle. However, there are a number of exceptions to the rule; for example palladium (atomic number 46) has no electrons in the fifth shell, unlike other atoms with lower atomic number. The elements past 108 have such short half-lives that their electron configurations have not yet been measured, and so predictions have been inserted instead.

Z Element No. of electrons/shell Group
1 Hydrogen 11
2 Helium 218
3 Lithium 2, 11
4 Beryllium 2, 22
5 Boron 2, 313
6 Carbon 2, 414
7 Nitrogen 2, 515
8 Oxygen 2, 616
9 Fluorine 2, 717
10 Neon 2, 818
11 Sodium 2, 8, 11
12 Magnesium 2, 8, 22
13 Aluminium 2, 8, 313
14 Silicon 2, 8, 414
15 Phosphorus 2, 8, 515
16 Sulfur 2, 8, 616
17 Chlorine 2, 8, 717
18 Argon 2, 8, 818
19 Potassium 2, 8, 8, 11
20 Calcium 2, 8, 8, 22
21 Scandium 2, 8, 9, 23
22 Titanium 2, 8, 10, 24
23 Vanadium 2, 8, 11, 25
24 Chromium 2, 8, 13, 16
25 Manganese 2, 8, 13, 27
26 Iron 2, 8, 14, 28
27 Cobalt 2, 8, 15, 29
28 Nickel 2, 8, 16, 210
29 Copper 2, 8, 18, 111
30 Zinc 2, 8, 18, 212
31 Gallium 2, 8, 18, 313
32 Germanium 2, 8, 18, 414
33 Arsenic 2, 8, 18, 515
34 Selenium 2, 8, 18, 616
35 Bromine 2, 8, 18, 717
36 Krypton 2, 8, 18, 818
37 Rubidium 2, 8, 18, 8, 11
38 Strontium 2, 8, 18, 8, 22
39 Yttrium 2, 8, 18, 9, 23
40 Zirconium 2, 8, 18, 10, 24
41 Niobium 2, 8, 18, 12, 15
42 Molybdenum 2, 8, 18, 13, 16
43 Technetium 2, 8, 18, 13, 27
44 Ruthenium 2, 8, 18, 15, 18
45 Rhodium 2, 8, 18, 16, 19
46 Palladium 2, 8, 18, 1810
47 Silver 2, 8, 18, 18, 111
48 Cadmium 2, 8, 18, 18, 212
49 Indium 2, 8, 18, 18, 313
50 Tin 2, 8, 18, 18, 414
51 Antimony 2, 8, 18, 18, 515
52 Tellurium 2, 8, 18, 18, 616
53 Iodine 2, 8, 18, 18, 717
54 Xenon 2, 8, 18, 18, 818
55 Caesium 2, 8, 18, 18, 8, 11
56 Barium 2, 8, 18, 18, 8, 22
57 Lanthanum 2, 8, 18, 18, 9, 2
58 Cerium 2, 8, 18, 19, 9, 2
59 Praseodymium 2, 8, 18, 21, 8, 2
60 Neodymium 2, 8, 18, 22, 8, 2
61 Promethium 2, 8, 18, 23, 8, 2
62 Samarium 2, 8, 18, 24, 8, 2
63 Europium 2, 8, 18, 25, 8, 2
64 Gadolinium 2, 8, 18, 25, 9, 2
65 Terbium 2, 8, 18, 27, 8, 2
66 Dysprosium 2, 8, 18, 28, 8, 2
67 Holmium 2, 8, 18, 29, 8, 2
68 Erbium 2, 8, 18, 30, 8, 2
69 Thulium 2, 8, 18, 31, 8, 2
70 Ytterbium 2, 8, 18, 32, 8, 2
71 Lutetium 2, 8, 18, 32, 9, 23
72 Hafnium 2, 8, 18, 32, 10, 24
73 Tantalum 2, 8, 18, 32, 11, 25
74 Tungsten 2, 8, 18, 32, 12, 26
75 Rhenium 2, 8, 18, 32, 13, 27
76 Osmium 2, 8, 18, 32, 14, 28
77 Iridium 2, 8, 18, 32, 15, 29
78 Platinum 2, 8, 18, 32, 17, 110
79 Gold 2, 8, 18, 32, 18, 111
80 Mercury 2, 8, 18, 32, 18, 212
81 Thallium 2, 8, 18, 32, 18, 313
82 Lead 2, 8, 18, 32, 18, 414
83 Bismuth 2, 8, 18, 32, 18, 515
84 Polonium 2, 8, 18, 32, 18, 616
85 Astatine 2, 8, 18, 32, 18, 717
86 Radon 2, 8, 18, 32, 18, 818
87 Francium 2, 8, 18, 32, 18, 8, 11
88 Radium 2, 8, 18, 32, 18, 8, 22
89 Actinium 2, 8, 18, 32, 18, 9, 2
90 Thorium 2, 8, 18, 32, 18, 10, 2
91 Protactinium 2, 8, 18, 32, 20, 9, 2
92 Uranium 2, 8, 18, 32, 21, 9, 2
93 Neptunium 2, 8, 18, 32, 22, 9, 2
94 Plutonium 2, 8, 18, 32, 24, 8, 2
95 Americium 2, 8, 18, 32, 25, 8, 2
96 Curium 2, 8, 18, 32, 25, 9, 2
97 Berkelium 2, 8, 18, 32, 27, 8, 2
98 Californium 2, 8, 18, 32, 28, 8, 2
99 Einsteinium 2, 8, 18, 32, 29, 8, 2
100 Fermium 2, 8, 18, 32, 30, 8, 2
101 Mendelevium 2, 8, 18, 32, 31, 8, 2
102 Nobelium 2, 8, 18, 32, 32, 8, 2
103 Lawrencium 2, 8, 18, 32, 32, 8, 33
104 Rutherfordium 2, 8, 18, 32, 32, 10, 24
105 Dubnium 2, 8, 18, 32, 32, 11, 25
106 Seaborgium 2, 8, 18, 32, 32, 12, 26
107 Bohrium 2, 8, 18, 32, 32, 13, 27
108 Hassium 2, 8, 18, 32, 32, 14, 28
109 Meitnerium 2, 8, 18, 32, 32, 15, 2 (?)9
110 Darmstadtium 2, 8, 18, 32, 32, 16, 2 (?)10
111 Roentgenium 2, 8, 18, 32, 32, 17, 2 (?)11
112 Copernicium 2, 8, 18, 32, 32, 18, 2 (?)12
113 Nihonium 2, 8, 18, 32, 32, 18, 3 (?)13
114 Flerovium 2, 8, 18, 32, 32, 18, 4 (?)14
115 Moscovium 2, 8, 18, 32, 32, 18, 5 (?)15
116 Livermorium 2, 8, 18, 32, 32, 18, 6 (?)16
117 Tennessine 2, 8, 18, 32, 32, 18, 7 (?)17
118 Oganesson 2, 8, 18, 32, 32, 18, 8 (?)18

See also

Related Research Articles

<span class="mw-page-title-main">Atomic number</span> Number of protons found in the nucleus of an atom

The atomic number or nuclear charge number of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (np) or the number of protons found in the nucleus of every atom of that element. The atomic number can be used to uniquely identify ordinary chemical elements. In an ordinary uncharged atom, the atomic number is also equal to the number of electrons.

<span class="mw-page-title-main">Atomic orbital</span> Function describing an electron in an atom

In quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around the nucleus.

<span class="mw-page-title-main">History of atomic theory</span>

Atomic theory is the scientific theory that matter is composed of particles called atoms. The definition of the word "atom" has changed over the years in response to scientific discoveries. Initially, it referred to a hypothetical concept of there being some fundamental particle of matter, too small to be seen by the naked eye, that could not be divided. Then the definition was refined to being the basic particles of the chemical elements, when chemists observed that elements seemed to combine with each other in ratios of small whole numbers. Then physicists discovered that these particles had an internal structure of their own and therefore perhaps did not deserve to be called "atoms", but renaming atoms would have been impractical by that point.

<span class="mw-page-title-main">Bohr model</span> Atomic model introduced by Niels Bohr in 1913

In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford's nuclear model, it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s. It consists of a small, dense nucleus surrounded by orbiting electrons. It is analogous to the structure of the Solar System, but with attraction provided by electrostatic force rather than gravity, and with the electron energies quantized.

<span class="mw-page-title-main">Periodic table</span> Tabular arrangement of the chemical elements ordered by atomic number

The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows ("periods") and columns ("groups"). It is an icon of chemistry and is widely used in physics and other sciences. It is a depiction of the periodic law, which states that when the elements are arranged in order of their atomic numbers an approximate recurrence of their properties is evident. The table is divided into four roughly rectangular areas called blocks. Elements in the same group tend to show similar chemical characteristics.

In chemistry, a transition metal is a chemical element in the d-block of the periodic table, though the elements of group 12 are sometimes excluded. The lanthanide and actinide elements are called inner transition metals and are sometimes considered to be transition metals as well.

<span class="mw-page-title-main">Atomic radius</span> Measure of the size of an atom

The atomic radius of a chemical element is a measure of the size of its atom, usually the mean or typical distance from the center of the nucleus to the outermost isolated electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Four widely used definitions of atomic radius are: Van der Waals radius, ionic radius, metallic radius and covalent radius. Typically, because of the difficulty to isolate atoms in order to measure their radii separately, atomic radius is measured in a chemically bonded state; however theoretical calculations are simpler when considering atoms in isolation. The dependencies on environment, probe, and state lead to a multiplicity of definitions.

<span class="mw-page-title-main">Ionization energy</span> Energy needed to remove an electron

In physics and chemistry, ionization energy (IE) is the minimum energy required to remove the most loosely bound electron of an isolated gaseous atom, positive ion, or molecule. The first ionization energy is quantitatively expressed as

<span class="mw-page-title-main">Electron configuration</span> Mode of arrangement of electrons in different shells of an atom

In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule in atomic or molecular orbitals. For example, the electron configuration of the neon atom is 1s2 2s2 2p6, meaning that the 1s, 2s, and 2p subshells are occupied by two, two, and six electrons, respectively.

<span class="mw-page-title-main">Rydberg formula</span> Formula for spectral line wavelengths in alkali metals

In atomic physics, the Rydberg formula calculates the wavelengths of a spectral line in many chemical elements. The formula was primarily presented as a generalization of the Balmer series for all atomic electron transitions of hydrogen. It was first empirically stated in 1888 by the Swedish physicist Johannes Rydberg, then theoretically by Niels Bohr in 1913, who used a primitive form of quantum mechanics. The formula directly generalizes the equations used to calculate the wavelengths of the hydrogen spectral series.

<span class="mw-page-title-main">Quantum number</span> Notation for conserved quantities in physics and chemistry

In quantum physics and chemistry, quantum numbers are quantities that characterize the possible states of the system. To fully specify the state of the electron in a hydrogen atom, four quantum numbers are needed. The traditional set of quantum numbers includes the principal, azimuthal, magnetic, and spin quantum numbers. To describe other systems, different quantum numbers are required. For subatomic particles, one needs to introduce new quantum numbers, such as the flavour of quarks, which have no classical correspondence.

In quantum mechanics, the principal quantum number is one of four quantum numbers assigned to each electron in an atom to describe that electron's state. Its values are natural numbers making it a discrete variable.

<span class="mw-page-title-main">Azimuthal quantum number</span> Quantum number denoting orbital angular momentum

In quantum mechanics, the azimuthal quantum number is a quantum number for an atomic orbital that determines its orbital angular momentum and describes aspects of the angular shape of the orbital. The azimuthal quantum number is the second of a set of quantum numbers that describe the unique quantum state of an electron.

<span class="mw-page-title-main">Valence electron</span> Electron in the outer shell of an atoms energy levels

In chemistry and physics, valence electrons are electrons in the outermost shell of an atom, and that can participate in the formation of a chemical bond if the outermost shell is not closed. In a single covalent bond, a shared pair forms with both atoms in the bond each contributing one valence electron.

<span class="mw-page-title-main">History of the periodic table</span> Development of the table of chemical elements

The periodic table is an arrangement of the chemical elements, structured by their atomic number, electron configuration and recurring chemical properties. In the basic form, elements are presented in order of increasing atomic number, in the reading sequence. Then, rows and columns are created by starting new rows and inserting blank cells, so that rows (periods) and columns (groups) show elements with recurring properties. For example, all elements in group (column) 18 are noble gases that are largely—though not completely—unreactive.

The old quantum theory is a collection of results from the years 1900–1925 which predate modern quantum mechanics. The theory was never complete or self-consistent, but was instead a set of heuristic corrections to classical mechanics. The theory has come to be understood as the semi-classical approximation to modern quantum mechanics. The main and final accomplishments of the old quantum theory were the determination of the modern form of the periodic table by Edmund Stoner and the Pauli exclusion principle, both of which were premised on Arnold Sommerfeld's enhancements to the Bohr model of the atom.

In atomic physics, a term symbol is an abbreviated description of the total spin and orbital angular momentum quantum numbers of the electrons in a multi-electron atom. So while the word symbol suggests otherwise, it represents an actual value of a physical quantity.

<span class="mw-page-title-main">Aufbau principle</span> Principle of atomic physics

In atomic physics and quantum chemistry, the Aufbau principle, also called the Aufbau rule, states that in the ground state of an atom or ion, electrons first fill subshells of the lowest available energy, then fill subshells of higher energy. For example, the 1s subshell is filled before the 2s subshell is occupied. In this way, the electrons of an atom or ion form the most stable electron configuration possible. An example is the configuration 1s2 2s2 2p6 3s2 3p3 for the phosphorus atom, meaning that the 1s subshell has 2 electrons, the 2s subshell has 2 electrons, the 2p subshell has 6 electrons, and so on.

Core electrons are the electrons in an atom that are not valence electrons and do not participate in chemical bonding. The nucleus and the core electrons of an atom form the atomic core. Core electrons are tightly bound to the nucleus. Therefore, unlike valence electrons, core electrons play a secondary role in chemical bonding and reactions by screening the positive charge of the atomic nucleus from the valence electrons.

<span class="mw-page-title-main">Bohr–Sommerfeld model</span> Extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus

The Bohr–Sommerfeld model was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld. Sommerfeld showed that, if electronic orbits are elliptical instead of circular, the fine-structure of the hydrogen atom can be described.

References

  1. 1 2 Re: Why do electron shells have set limits ? madsci.org, 17 March 1999, Dan Berger, Faculty Chemistry/Science, Bluffton College
  2. 1 2 Electron Subshells. Corrosion Source.
  3. Bohr, N. (1913). "On the Constitution of Atoms and Molecules, Part II. Systems containing only a Single Nucleus". Philosophical Magazine. 26: 476–502.
  4. 1 2 3 4 5 6 7 Kragh, Helge. "Niels Bohr’s Second Atomic Theory". Historical Studies in the Physical Sciences, vol. 10, University of California Press, 1979, pp. 123–86, https://doi.org/10.2307/27757389.
  5. W. Kossel, "Über Molekülbildung als Folge des Atombaues", Ann. Phys., 1916, 49, 229-362 (237).
  6. Translated in Helge Kragh, Aarhus, LARS VEGARD, ATOMIC STRUCTURE, AND THE PERIODIC SYSTEM, Bull. Hist. Chem., VOLUME 37, Number 1 (2012), p.43.
  7. Donald Sadoway, Introduction to Solid State Chemistry, Lecture 5 Archived 29 June 2011 at the Wayback Machine
  8. Bohr, Niels (1913). On the Constitution of Atoms and Molecules, Part I. _Philosophical Magazine_ 26:1--25.
  9. Uhler, Horace Scudder. "On Moseley’s Law for X-Ray Spectra". Proceedings of the National Academy of Sciences of the United States of America, vol. 3, no. 2, National Academy of Sciences, 1917, pp. 88–90, http://www.jstor.org/stable/83748.
  10. Niels Bohr interview 1962 Session III https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4517-3
  11. Kumar, Manjit. Quantum: Einstein, Bohr, and the great debate about the nature of reality / Manjit Kumar.—1st American ed., 2008. Chap.4.
  12. Barkla, Charles G. (1911). "XXXIX.The spectra of the fluorescent Röntgen radiations". Philosophical Magazine. Series 6. 22 (129): 396–412. doi:10.1080/14786440908637137. Previously denoted by letters B and A (...). The letters K and L are, however, preferable, as it is highly probable that series of radiations both more absorbable and more penetrating exist.
  13. Michael Eckert, Disputed discovery: the beginnings of X-ray diffraction in crystals in 1912 and its repercussions, January 2011, Acta crystallographica. Section A, Foundations of crystallography 68(1):30-39 This Laue centennial article has also been published in Zeitschrift für Kristallographie [Eckert (2012). Z. Kristallogr. 227 , 27–35].
  14. Charles G. Barkla M.A. D.Sc. (1911) XXXIX. The spectra of the fluorescent Röntgen radiations, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 22:129, 396-412, DOI: 10.1080/14786440908637137
  15. T.Hirosigeand S.Nisio,"Formation of Bohr's Theory of Atomic Constitution",Jap. Stud.Hist.Set.,No. 3(1964),6-28.
  16. See Periodic Table for full history.
  17. 1 2 Niels Bohr Collected Works, Vol. 4, p. 740. Postcard from Arnold Sommerfeld to Bohr, 7 March 1921.
  18. Pais, Abraham (1991), Niels Bohr’s Times, in Physics, Philosophy, and Polity (Oxford: Clarendon Press), quoted p. 205.
  19. Schilpp, Paul A. (ed.) (1969), Albert Einstein: Philosopher-Scientist (New York: MJF Books). Collection first published in 1949 as Vol. VII in the series The Library of Living Philosophers by Open Court, La Salle, IL, Einstein, Albert 'Autobiographical Notes', pp.45-47.
  20. Kumar, Manjit. Quantum: Einstein, Bohr, and the great debate about the nature of reality / Manjit Kumar.—1st American ed., 2008. Chap.7.
  21. Bury, Charles R. (July 1921). "Langmuir's Theory of the Arrangement of Electrons in Atoms and Molecules". Journal of the American Chemical Society. 43 (7): 1602–1609. doi:10.1021/ja01440a023. ISSN 0002-7863.
  22. The Genesis of the Bohr Atom, John L. Heilbron and Thomas S. Kuhn, Historical Studies in the Physical Sciences, Vol. 1 (1969), pp. vi, 211-290 (81 pages), University of California Press,p. 285-286.
  23. Kumar, Manjit. Quantum: Einstein, Bohr, and the great debate about the nature of reality / Manjit Kumar.—1st American ed., 2008. Chap.5.
  24. Jue, T. (2009). "Quantum Mechanic Basic to Biophysical Methods". Fundamental Concepts in Biophysics. Berlin: Springer. p. 33. ISBN   978-1-58829-973-4.
  25. Orbitals. Chem4Kids. Retrieved on 1 December 2011.
  26. Electron & Shell Configuration Archived 28 December 2018 at the Wayback Machine . Chemistry.patent-invent.com. Retrieved on 1 December 2011.