Moscovium | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation | /mɒˈskoʊviəm/ | |||||||||||||||||||||||||||||||||||
Mass number | [290] (data not decisive) [lower-alpha 1] | |||||||||||||||||||||||||||||||||||
Moscovium in the periodic table | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
Atomic number (Z) | 115 | |||||||||||||||||||||||||||||||||||
Group | group 15 (pnictogens) | |||||||||||||||||||||||||||||||||||
Period | period 7 | |||||||||||||||||||||||||||||||||||
Block | p-block | |||||||||||||||||||||||||||||||||||
Electron configuration | [ Rn ] 5f14 6d10 7s2 7p3(predicted) [3] | |||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, 18, 32, 32, 18, 5 (predicted) | |||||||||||||||||||||||||||||||||||
Physical properties | ||||||||||||||||||||||||||||||||||||
Phase at STP | solid (predicted) [3] | |||||||||||||||||||||||||||||||||||
Melting point | 670 K (400 °C,750 °F)(predicted) [3] [4] | |||||||||||||||||||||||||||||||||||
Boiling point | ~1400 K(~1100 °C,~2000 °F)(predicted) [3] | |||||||||||||||||||||||||||||||||||
Density (near r.t.) | 13.5 g/cm3(predicted) [4] | |||||||||||||||||||||||||||||||||||
Heat of fusion | 5.90–5.98 kJ/mol (extrapolated) [5] | |||||||||||||||||||||||||||||||||||
Heat of vaporization | 138 kJ/mol(predicted) [4] | |||||||||||||||||||||||||||||||||||
Atomic properties | ||||||||||||||||||||||||||||||||||||
Oxidation states | common: (none) | |||||||||||||||||||||||||||||||||||
Ionization energies | ||||||||||||||||||||||||||||||||||||
Atomic radius | empirical:187 pm (predicted) [3] [4] | |||||||||||||||||||||||||||||||||||
Covalent radius | 156–158 pm(extrapolated) [5] | |||||||||||||||||||||||||||||||||||
Other properties | ||||||||||||||||||||||||||||||||||||
Natural occurrence | synthetic | |||||||||||||||||||||||||||||||||||
CAS Number | 54085-64-2 | |||||||||||||||||||||||||||||||||||
History | ||||||||||||||||||||||||||||||||||||
Naming | After Moscow region | |||||||||||||||||||||||||||||||||||
Discovery | Joint Institute for Nuclear Research and Lawrence Livermore National Laboratory (2003) | |||||||||||||||||||||||||||||||||||
Isotopes of moscovium | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
Moscovium is a synthetic chemical element; it has symbol Mc and atomic number 115. It was first synthesized in 2003 by a joint team of Russian and American scientists at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. In December 2015, it was recognized as one of four new elements by the Joint Working Party of international scientific bodies IUPAC and IUPAP. On 28 November 2016, it was officially named after the Moscow Oblast, in which the JINR is situated. [10] [11] [12]
Moscovium is an extremely radioactive element: its most stable known isotope, moscovium-290, has a half-life of only 0.65 seconds. [9] In the periodic table, it is a p-block transactinide element. It is a member of the 7th period and is placed in group 15 as the heaviest pnictogen, although it has not been confirmed to behave as a heavier homologue of the pnictogen bismuth. Moscovium is calculated to have some properties similar to its lighter homologues, nitrogen, phosphorus, arsenic, antimony, and bismuth, and to be a post-transition metal, although it should also show several major differences from them. In particular, moscovium should also have significant similarities to thallium, as both have one rather loosely bound electron outside a quasi-closed shell. Over a hundred atoms of moscovium have been observed to date, all of which have been shown to have mass numbers from 286 to 290.
A superheavy [lower-alpha 2] atomic nucleus is created in a nuclear reaction that combines two other nuclei of unequal size [lower-alpha 3] into one; roughly, the more unequal the two nuclei in terms of mass, the greater the possibility that the two react. [18] The material made of the heavier nuclei is made into a target, which is then bombarded by the beam of lighter nuclei. Two nuclei can only fuse into one if they approach each other closely enough; normally, nuclei (all positively charged) repel each other due to electrostatic repulsion. The strong interaction can overcome this repulsion but only within a very short distance from a nucleus; beam nuclei are thus greatly accelerated in order to make such repulsion insignificant compared to the velocity of the beam nucleus. [19] The energy applied to the beam nuclei to accelerate them can cause them to reach speeds as high as one-tenth of the speed of light. However, if too much energy is applied, the beam nucleus can fall apart. [19]
Coming close enough alone is not enough for two nuclei to fuse: when two nuclei approach each other, they usually remain together for about 10−20 seconds and then part ways (not necessarily in the same composition as before the reaction) rather than form a single nucleus. [19] [20] This happens because during the attempted formation of a single nucleus, electrostatic repulsion tears apart the nucleus that is being formed. [19] Each pair of a target and a beam is characterized by its cross section—the probability that fusion will occur if two nuclei approach one another expressed in terms of the transverse area that the incident particle must hit in order for the fusion to occur. [lower-alpha 4] This fusion may occur as a result of the quantum effect in which nuclei can tunnel through electrostatic repulsion. If the two nuclei can stay close past that phase, multiple nuclear interactions result in redistribution of energy and an energy equilibrium. [19]
External videos | |
---|---|
Visualization of unsuccessful nuclear fusion, based on calculations from the Australian National University [22] |
The resulting merger is an excited state [23] —termed a compound nucleus—and thus it is very unstable. [19] To reach a more stable state, the temporary merger may fission without formation of a more stable nucleus. [24] Alternatively, the compound nucleus may eject a few neutrons, which would carry away the excitation energy; if the latter is not sufficient for a neutron expulsion, the merger would produce a gamma ray. This happens in about 10−16 seconds after the initial nuclear collision and results in creation of a more stable nucleus. [24] The definition by the IUPAC/IUPAP Joint Working Party (JWP) states that a chemical element can only be recognized as discovered if a nucleus of it has not decayed within 10−14 seconds. This value was chosen as an estimate of how long it takes a nucleus to acquire electrons and thus display its chemical properties. [25] [lower-alpha 5]
The beam passes through the target and reaches the next chamber, the separator; if a new nucleus is produced, it is carried with this beam. [27] In the separator, the newly produced nucleus is separated from other nuclides (that of the original beam and any other reaction products) [lower-alpha 6] and transferred to a surface-barrier detector, which stops the nucleus. The exact location of the upcoming impact on the detector is marked; also marked are its energy and the time of the arrival. [27] The transfer takes about 10−6 seconds; in order to be detected, the nucleus must survive this long. [30] The nucleus is recorded again once its decay is registered, and the location, the energy, and the time of the decay are measured. [27]
Stability of a nucleus is provided by the strong interaction. However, its range is very short; as nuclei become larger, its influence on the outermost nucleons (protons and neutrons) weakens. At the same time, the nucleus is torn apart by electrostatic repulsion between protons, and its range is not limited. [31] Total binding energy provided by the strong interaction increases linearly with the number of nucleons, whereas electrostatic repulsion increases with the square of the atomic number, i.e. the latter grows faster and becomes increasingly important for heavy and superheavy nuclei. [32] [33] Superheavy nuclei are thus theoretically predicted [34] and have so far been observed [35] to predominantly decay via decay modes that are caused by such repulsion: alpha decay and spontaneous fission. [lower-alpha 7] Almost all alpha emitters have over 210 nucleons, [37] and the lightest nuclide primarily undergoing spontaneous fission has 238. [38] In both decay modes, nuclei are inhibited from decaying by corresponding energy barriers for each mode, but they can be tunneled through. [32] [33]
Alpha particles are commonly produced in radioactive decays because the mass of an alpha particle per nucleon is small enough to leave some energy for the alpha particle to be used as kinetic energy to leave the nucleus. [40] Spontaneous fission is caused by electrostatic repulsion tearing the nucleus apart and produces various nuclei in different instances of identical nuclei fissioning. [33] As the atomic number increases, spontaneous fission rapidly becomes more important: spontaneous fission partial half-lives decrease by 23 orders of magnitude from uranium (element 92) to nobelium (element 102), [41] and by 30 orders of magnitude from thorium (element 90) to fermium (element 100). [42] The earlier liquid drop model thus suggested that spontaneous fission would occur nearly instantly due to disappearance of the fission barrier for nuclei with about 280 nucleons. [33] [43] The later nuclear shell model suggested that nuclei with about 300 nucleons would form an island of stability in which nuclei will be more resistant to spontaneous fission and will primarily undergo alpha decay with longer half-lives. [33] [43] Subsequent discoveries suggested that the predicted island might be further than originally anticipated; they also showed that nuclei intermediate between the long-lived actinides and the predicted island are deformed, and gain additional stability from shell effects. [44] Experiments on lighter superheavy nuclei, [45] as well as those closer to the expected island, [41] have shown greater than previously anticipated stability against spontaneous fission, showing the importance of shell effects on nuclei. [lower-alpha 8]
Alpha decays are registered by the emitted alpha particles, and the decay products are easy to determine before the actual decay; if such a decay or a series of consecutive decays produces a known nucleus, the original product of a reaction can be easily determined. [lower-alpha 9] (That all decays within a decay chain were indeed related to each other is established by the location of these decays, which must be in the same place.) [27] The known nucleus can be recognized by the specific characteristics of decay it undergoes such as decay energy (or more specifically, the kinetic energy of the emitted particle). [lower-alpha 10] Spontaneous fission, however, produces various nuclei as products, so the original nuclide cannot be determined from its daughters. [lower-alpha 11]
The information available to physicists aiming to synthesize a superheavy element is thus the information collected at the detectors: location, energy, and time of arrival of a particle to the detector, and those of its decay. The physicists analyze this data and seek to conclude that it was indeed caused by a new element and could not have been caused by a different nuclide than the one claimed. Often, provided data is insufficient for a conclusion that a new element was definitely created and there is no other explanation for the observed effects; errors in interpreting data have been made. [lower-alpha 12]The first successful synthesis of moscovium was by a joint team of Russian and American scientists in August 2003 at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. Headed by Russian nuclear physicist Yuri Oganessian, the team included American scientists of the Lawrence Livermore National Laboratory. The researchers on February 2, 2004, stated in Physical Review C that they bombarded americium-243 with calcium-48 ions to produce four atoms of moscovium. These atoms decayed by emission of alpha-particles to nihonium in about 100 milliseconds. [56]
The Dubna–Livermore collaboration strengthened their claim to the discoveries of moscovium and nihonium by conducting chemical experiments on the final decay product 268Db. None of the nuclides in this decay chain were previously known, so existing experimental data was not available to support their claim. In June 2004 and December 2005, the presence of a dubnium isotope was confirmed by extracting the final decay products, measuring spontaneous fission (SF) activities and using chemical identification techniques to confirm that they behave like a group 5 element (as dubnium is known to be in group 5 of the periodic table). [3] [57] Both the half-life and the decay mode were confirmed for the proposed 268Db, lending support to the assignment of the parent nucleus to moscovium. [57] [58] However, in 2011, the IUPAC/IUPAP Joint Working Party (JWP) did not recognize the two elements as having been discovered, because current theory could not distinguish the chemical properties of group 4 and group 5 elements with sufficient confidence. [59] Furthermore, the decay properties of all the nuclei in the decay chain of moscovium had not been previously characterized before the Dubna experiments, a situation which the JWP generally considers "troublesome, but not necessarily exclusive". [59]
Two heavier isotopes of moscovium, 289Mc and 290Mc, were discovered in 2009–2010 as daughters of the tennessine isotopes 293Ts and 294Ts; the isotope 289Mc was later also synthesized directly and confirmed to have the same properties as found in the tennessine experiments. [8]
In 2011, the Joint Working Party of international scientific bodies International Union of Pure and Applied Chemistry (IUPAC) and International Union of Pure and Applied Physics (IUPAP) evaluated the 2004 and 2007 Dubna experiments, and concluded that they did not meet the criteria for discovery. Another evaluation of more recent experiments took place within the next few years, and a claim to the discovery of moscovium was again put forward by Dubna. [59] In August 2013, a team of researchers at Lund University and at the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt, Germany announced they had repeated the 2004 experiment, confirming Dubna's findings. [60] [61] Simultaneously, the 2004 experiment had been repeated at Dubna, now additionally also creating the isotope 289Mc that could serve as a cross-bombardment for confirming the discovery of the tennessine isotope 293Ts in 2010. [62] Further confirmation was published by the team at the Lawrence Berkeley National Laboratory in 2015. [63]
In December 2015, the IUPAC/IUPAP Joint Working Party recognized the element's discovery and assigned the priority to the Dubna-Livermore collaboration of 2009–2010, giving them the right to suggest a permanent name for it. [64] While they did not recognise the experiments synthesising 287Mc and 288Mc as persuasive due to the lack of a convincing identification of atomic number via cross-reactions, they recognised the 293Ts experiments as persuasive because its daughter 289Mc had been produced independently and found to exhibit the same properties. [62]
In May 2016, Lund University (Lund, Scania, Sweden) and GSI cast some doubt on the syntheses of moscovium and tennessine. The decay chains assigned to 289Mc, the isotope instrumental in the confirmation of the syntheses of moscovium and tennessine, were found based on a new statistical method to be too different to belong to the same nuclide with a reasonably high probability. The reported 293Ts decay chains approved as such by the JWP were found to require splitting into individual data sets assigned to different tennessine isotopes. It was also found that the claimed link between the decay chains reported as from 293Ts and 289Mc probably did not exist. (On the other hand, the chains from the non-approved isotope 294Ts were found to be congruent.) The multiplicity of states found when nuclides that are not even–even undergo alpha decay is not unexpected and contributes to the lack of clarity in the cross-reactions. This study criticized the JWP report for overlooking subtleties associated with this issue, and considered it "problematic" that the only argument for the acceptance of the discoveries of moscovium and tennessine was a link they considered to be doubtful. [65] [66]
On June 8, 2017, two members of the Dubna team published a journal article answering these criticisms, analysing their data on the nuclides 293Ts and 289Mc with widely accepted statistical methods, noted that the 2016 studies indicating non-congruence produced problematic results when applied to radioactive decay: they excluded from the 90% confidence interval both average and extreme decay times, and the decay chains that would be excluded from the 90% confidence interval they chose were more probable to be observed than those that would be included. The 2017 reanalysis concluded that the observed decay chains of 293Ts and 289Mc were consistent with the assumption that only one nuclide was present at each step of the chain, although it would be desirable to be able to directly measure the mass number of the originating nucleus of each chain as well as the excitation function of the 243Am+48Ca reaction. [67]
Using Mendeleev's nomenclature for unnamed and undiscovered elements, moscovium is sometimes known as eka-bismuth . In 1979, IUPAC recommended that the placeholder systematic element name ununpentium (with the corresponding symbol of Uup) [68] be used until the discovery of the element is confirmed and a permanent name is decided. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations were mostly ignored among scientists in the field, who called it "element 115", with the symbol of E115, (115) or even simply 115. [3]
On 30 December 2015, discovery of the element was recognized by the International Union of Pure and Applied Chemistry (IUPAC). [69] According to IUPAC recommendations, the discoverer(s) of a new element has the right to suggest a name. [70] A suggested name was langevinium, after Paul Langevin . [71] Later, the Dubna team mentioned the name moscovium several times as one among many possibilities, referring to the Moscow Oblast where Dubna is located. [72] [73]
In June 2016, IUPAC endorsed the latter proposal to be formally accepted by the end of the year, which it was on 28 November 2016. [12] The naming ceremony for moscovium, tennessine, and oganesson was held on 2 March 2017 at the Russian Academy of Sciences in Moscow. [74]
In 2024, the team at JINR reported the observation of one decay chain of 289Mc while studying the reaction between 242Pu and 50Ti, aimed at producing more neutron-deficient livermorium isotopes in preparation for synthesis attempts of elements 119 and 120. This was the first successful report of a charged-particle exit channel – the evaporation of a proton and two neutrons, rather than only neutrons, as the compound nucleus de-excites to the ground state – in a hot fusion reaction between an actinide target and a projectile with atomic number greater than or equal to 20. [75] Such reactions have been proposed as a novel synthesis route for yet-undiscovered isotopes of superheavy elements with several neutrons more than the known ones, which may be closer to the theorized island of stability and have longer half-lives. In particular, the isotopes 291Mc–293Mc may be reachable in these types of reactions within current detection limits. [76] [77]
Other than nuclear properties, no properties of moscovium or its compounds have been measured; this is due to its extremely limited and expensive production [18] and the fact that it decays very quickly. Properties of moscovium remain unknown and only predictions are available.
Moscovium is expected to be within an island of stability centered on copernicium (element 112) and flerovium (element 114). [78] [79] Due to the expected high fission barriers, any nucleus within this island of stability exclusively decays by alpha decay and perhaps some electron capture and beta decay. [4] Although the known isotopes of moscovium do not actually have enough neutrons to be on the island of stability, they can be seen to approach the island as in general, the heavier isotopes are the longer-lived ones. [8] [9] [57]
The hypothetical isotope 291Mc is an especially interesting case as it has only one neutron more than the heaviest known moscovium isotope, 290Mc. It could plausibly be synthesized as the daughter of 295Ts, which in turn could be made from the reaction 249Bk(48Ca,2n)295Ts. [78] Calculations show that it may have a significant electron capture or positron emission decay mode in addition to alpha decay and also have a relatively long half-life of several seconds. This would produce 291 Fl, 291Nh, and finally 291 Cn which is expected to be in the middle of the island of stability and have a half-life of about 1200 years, affording the most likely hope of reaching the middle of the island using current technology. Possible drawbacks are that the cross section of the production reaction of 295Ts is expected to be low and the decay properties of superheavy nuclei this close to the line of beta stability are largely unexplored. [78] The heavy isotopes from 291Mc to 294Mc might also be produced using charged-particle evaporation, in the 245Cm(48Ca,pxn) and 248Cm(48Ca,pxn) reactions. [76] [77]
The light isotopes 284Mc, 285Mc, and 286Mc could be made from the 241Am+48Ca reaction. They would undergo a chain of alpha decays, ending at transactinide isotopes too light to be made by hot fusion and too heavy to be made by cold fusion. [78] The isotope 286Mc was found in 2021 at Dubna, in the 243Am(48Ca,5n)286Mc reaction: it decays into the already-known 282Nh and its daughters. [80] The yet lighter 282Mc and 283Mc could be made from 243Am+44Ca, but the cross-section would likely be lower. [78]
Other possibilities to synthesize nuclei on the island of stability include quasifission (partial fusion followed by fission) of a massive nucleus. [81] Such nuclei tend to fission, expelling doubly magic or nearly doubly magic fragments such as calcium-40, tin-132, lead-208, or bismuth-209. [82] It has been shown that the multi-nucleon transfer reactions in collisions of actinide nuclei (such as uranium and curium) might be used to synthesize the neutron-rich superheavy nuclei located at the island of stability, [81] although formation of the lighter elements nobelium or seaborgium is more favored. [78] One last possibility to synthesize isotopes near the island is to use controlled nuclear explosions to create a neutron flux high enough to bypass the gaps of instability at 258–260 Fm and at mass number 275 (atomic numbers 104 to 108), mimicking the r-process in which the actinides were first produced in nature and the gap of instability around radon bypassed. [78] Some such isotopes (especially 291Cn and 293Cn) may even have been synthesized in nature, but would have decayed away far too quickly (with half-lives of only thousands of years) and be produced in far too small quantities (about 10−12 the abundance of lead) to be detectable as primordial nuclides today outside cosmic rays. [78]
In the periodic table, moscovium is a member of group 15, the pnictogens. It appears below nitrogen, phosphorus, arsenic, antimony, and bismuth. Every previous pnictogen has five electrons in its valence shell, forming a valence electron configuration of ns2np3. In moscovium's case, the trend should be continued and the valence electron configuration is predicted to be 7s27p3; [3] therefore, moscovium will behave similarly to its lighter congeners in many respects. However, notable differences are likely to arise; a largely contributing effect is the spin–orbit (SO) interaction—the mutual interaction between the electrons' motion and spin. It is especially strong for the superheavy elements, because their electrons move much faster than in lighter atoms, at velocities comparable to the speed of light. [83] In relation to moscovium atoms, it lowers the 7s and the 7p electron energy levels (stabilizing the corresponding electrons), but two of the 7p electron energy levels are stabilized more than the other four. [84] The stabilization of the 7s electrons is called the inert-pair effect, and the effect "tearing" the 7p subshell into the more stabilized and the less stabilized parts is called subshell splitting. Computation chemists see the split as a change of the second (azimuthal) quantum number l from 1 to 1⁄2 and 3⁄2 for the more stabilized and less stabilized parts of the 7p subshell, respectively. [83] [lower-alpha 13] For many theoretical purposes, the valence electron configuration may be represented to reflect the 7p subshell split as 7s2
7p2
1/27p1
3/2. [3] These effects cause moscovium's chemistry to be somewhat different from that of its lighter congeners.
The valence electrons of moscovium fall into three subshells: 7s (two electrons), 7p1/2 (two electrons), and 7p3/2 (one electron). The first two of these are relativistically stabilized and hence behave as inert pairs, while the last is relativistically destabilized and can easily participate in chemistry. [3] (The 6d electrons are not destabilized enough to participate chemically.) [4] Thus, the +1 oxidation state should be favored, like Tl +, and consistent with this the first ionization potential of moscovium should be around 5.58 eV, continuing the trend towards lower ionization potentials down the pnictogens. [3] Moscovium and nihonium both have one electron outside a quasi-closed shell configuration that can be delocalized in the metallic state: thus they should have similar melting and boiling points (both melting around 400 °C and boiling around 1100 °C) due to the strength of their metallic bonds being similar. [4] Additionally, the predicted ionization potential, ionic radius (1.5 Å for Mc+; 1.0 Å for Mc3+), and polarizability of Mc+ are expected to be more similar to Tl+ than its true congener Bi3+. [4] Moscovium should be a dense metal due to its high atomic weight, with a density around 13.5 g/cm3. [4] The electron of the hydrogen-like moscovium atom (oxidized so that it only has one electron, Mc114+) is expected to move so fast that it has a mass 1.82 times that of a stationary electron, due to relativistic effects. For comparison, the figures for hydrogen-like bismuth and antimony are expected to be 1.25 and 1.077 respectively. [83]
Moscovium is predicted to be the third member of the 7p series of chemical elements and the heaviest member of group 15 in the periodic table, below bismuth. Unlike the two previous 7p elements, moscovium is expected to be a good homologue of its lighter congener, in this case bismuth. [85] In this group, each member is known to portray the group oxidation state of +5 but with differing stability. For nitrogen, the +5 state is mostly a formal explanation of molecules like N2O5: it is very difficult to have five covalent bonds to nitrogen due to the inability of the small nitrogen atom to accommodate five ligands. The +5 state is well represented for the essentially non-relativistic typical pnictogens phosphorus, arsenic, and antimony. However, for bismuth it becomes rare due to the relativistic stabilization of the 6s orbitals known as the inert-pair effect, so that the 6s electrons are reluctant to bond chemically. It is expected that moscovium will have an inert-pair effect for both the 7s and the 7p1/2 electrons, as the binding energy of the lone 7p3/2 electron is noticeably lower than that of the 7p1/2 electrons. Nitrogen(I) and bismuth(I) are known but rare and moscovium(I) is likely to show some unique properties, [86] probably behaving more like thallium(I) than bismuth(I). [4] Because of spin-orbit coupling, flerovium may display closed-shell or noble gas-like properties; if this is the case, moscovium will likely be typically monovalent as a result, since the cation Mc+ will have the same electron configuration as flerovium, perhaps giving moscovium some alkali metal character. [4] Calculations predict that moscovium(I) fluoride and chloride would be ionic compounds, with an ionic radius of about 109–114 pm for Mc+, although the 7p1/2 lone pair on the Mc+ ion should be highly polarisable. [87] The Mc3+ cation should behave like its true lighter homolog Bi3+. [4] The 7s electrons are too stabilized to be able to contribute chemically and hence the +5 state should be impossible and moscovium may be considered to have only three valence electrons. [4] Moscovium would be quite a reactive metal, with a standard reduction potential of −1.5 V for the Mc+/Mc couple. [4]
The chemistry of moscovium in aqueous solution should essentially be that of the Mc+ and Mc3+ ions. The former should be easily hydrolyzed and not be easily complexed with halides, cyanide, and ammonia. [4] Moscovium(I) hydroxide (McOH), carbonate (Mc2CO3), oxalate (Mc2C2O4), and fluoride (McF) should be soluble in water; the sulfide (Mc2S) should be insoluble; and the chloride (McCl), bromide (McBr), iodide (McI), and thiocyanate (McSCN) should be only slightly soluble, so that adding excess hydrochloric acid would not noticeably affect the solubility of moscovium(I) chloride. [4] Mc3+ should be about as stable as Tl3+ and hence should also be an important part of moscovium chemistry, although its closest homolog among the elements should be its lighter congener Bi3+. [4] Moscovium(III) fluoride (McF3) and thiozonide (McS3) should be insoluble in water, similar to the corresponding bismuth compounds, while moscovium(III) chloride (McCl3), bromide (McBr3), and iodide (McI3) should be readily soluble and easily hydrolyzed to form oxyhalides such as McOCl and McOBr, again analogous to bismuth. [4] Both moscovium(I) and moscovium(III) should be common oxidation states and their relative stability should depend greatly on what they are complexed with and the likelihood of hydrolysis. [4]
Like its lighter homologues ammonia, phosphine, arsine, stibine, and bismuthine, moscovine (McH3) is expected to have a trigonal pyramidal molecular geometry, with an Mc–H bond length of 195.4 pm and a H–Mc–H bond angle of 91.8° (bismuthine has bond length 181.7 pm and bond angle 91.9°; stibine has bond length 172.3 pm and bond angle 92.0°). [88] In the predicted aromatic pentagonal planar Mc−
5 cluster, analogous to pentazolate (N−
5), the Mc–Mc bond length is expected to be expanded from the extrapolated value of 312–316 pm to 329 pm due to spin–orbit coupling effects. [89]
Unambiguous determination of the chemical characteristics of moscovium has yet to have been established. [90] [91] In 2011, experiments were conducted to create nihonium, flerovium, and moscovium isotopes in the reactions between calcium-48 projectiles and targets of americium-243 and plutonium-244. However, the targets included lead and bismuth impurities and hence some isotopes of bismuth and polonium were generated in nucleon transfer reactions. This, while an unforeseen complication, could give information that would help in the future chemical investigation of the heavier homologs of bismuth and polonium, which are respectively moscovium and livermorium. [91] The produced nuclides bismuth-213 and polonium-212m were transported as the hydrides 213BiH3 and 212mPoH2 at 850 °C through a quartz wool filter unit held with tantalum, showing that these hydrides were surprisingly thermally stable, although their heavier congeners McH3 and LvH2 would be expected to be less thermally stable from simple extrapolation of periodic trends in the p-block. [91] Further calculations on the stability and electronic structure of BiH3, McH3, PoH2, and LvH2 are needed before chemical investigations take place. However, moscovium and livermorium are expected to be volatile enough as pure elements for them to be chemically investigated in the near future. The moscovium isotopes 288Mc, 289Mc, and 290Mc may be chemically investigated with current methods, although their short half-lives would make this challenging. [91] Moscovium is the heaviest element that has known isotopes that are long-lived enough for chemical experimentation. [92]
Bohrium is a synthetic chemical element; it has symbol Bh and atomic number 107. It is named after Danish physicist Niels Bohr. As a synthetic element, it can be created in particle accelerators but is not found in nature. All known isotopes of bohrium are highly radioactive; the most stable known isotope is 270Bh with a half-life of approximately 2.4 minutes, though the unconfirmed 278Bh may have a longer half-life of about 11.5 minutes.
Dubnium is a synthetic chemical element; it has symbol Db and atomic number 105. It is highly radioactive: the most stable known isotope, dubnium-268, has a half-life of about 16 hours. This greatly limits extended research on the element.
Hassium is a synthetic chemical element; it has symbol Hs and atomic number 108. It is highly radioactive: its most stable known isotopes have half-lives of approximately ten seconds. One of its isotopes, 270Hs, has magic numbers of protons and neutrons for deformed nuclei, giving it greater stability against spontaneous fission. Hassium is a superheavy element; it has been produced in a laboratory in very small quantities by fusing heavy nuclei with lighter ones. Natural occurrences of the element have been hypothesised but never found.
Rutherfordium is a synthetic chemical element; it has symbol Rf and atomic number 104. It is named after physicist Ernest Rutherford. As a synthetic element, it is not found in nature and can only be made in a particle accelerator. It is radioactive; the most stable known isotope, 267Rf, has a half-life of about 48 minutes.
Roentgenium is a synthetic chemical element; it has symbol Rg and atomic number 111. It is extremely radioactive and can only be created in a laboratory. The most stable known isotope, roentgenium-282, has a half-life of 130 seconds, although the unconfirmed roentgenium-286 may have a longer half-life of about 10.7 minutes. Roentgenium was first created in 1994 by the GSI Helmholtz Centre for Heavy Ion Research near Darmstadt, Germany. It is named after the physicist Wilhelm Röntgen, who discovered X-rays. Only a few roentgenium atoms have ever been synthesized, and they have no practical application.
Livermorium is a synthetic chemical element; it has symbol Lv and atomic number 116. It is an extremely radioactive element that has only been created in a laboratory setting and has not been observed in nature. The element is named after the Lawrence Livermore National Laboratory in the United States, which collaborated with the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, to discover livermorium during experiments conducted between 2000 and 2006. The name of the laboratory refers to the city of Livermore, California, where it is located, which in turn was named after the rancher and landowner Robert Livermore. The name was adopted by IUPAC on May 30, 2012. Six isotopes of livermorium are known, with mass numbers of 288–293 inclusive; the longest-lived among them is livermorium-293 with a half-life of about 80 milliseconds. A seventh possible isotope with mass number 294 has been reported but not yet confirmed.
Oganesson is a synthetic chemical element; it has symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scientists. In December 2015, it was recognized as one of four new elements by the Joint Working Party of the international scientific bodies IUPAC and IUPAP. It was formally named on 28 November 2016. The name honors the nuclear physicist Yuri Oganessian, who played a leading role in the discovery of the heaviest elements in the periodic table. It is one of only two elements named after a person who was alive at the time of naming, the other being seaborgium, and the only element whose eponym is alive as of 2024.
Unbinilium, also known as eka-radium or element 120, is a hypothetical chemical element; it has symbol Ubn and atomic number 120. Unbinilium and Ubn are the temporary systematic IUPAC name and symbol, which are used until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table of the elements, it is expected to be an s-block element, an alkaline earth metal, and the second element in the eighth period. It has attracted attention because of some predictions that it may be in the island of stability.
Ununennium, also known as eka-francium or element 119, is a hypothetical chemical element; it has symbol Uue and atomic number 119. Ununennium and Uue are the temporary systematic IUPAC name and symbol respectively, which are used until the element has been discovered, confirmed, and a permanent name is decided upon. In the periodic table of the elements, it is expected to be an s-block element, an alkali metal, and the first element in the eighth period. It is the lightest element that has not yet been synthesized.
Tennessine is a synthetic chemical element; it has symbol Ts and atomic number 117. It has the second-highest atomic number and joint-highest atomic mass of all known elements and is the penultimate element of the 7th period of the periodic table. It is named after the U.S. state of Tennessee, where key research institutions involved in its discovery are located.
Copernicium is a synthetic chemical element; it has symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of approximately 30 seconds. Copernicium was first created in 1996 by the GSI Helmholtz Centre for Heavy Ion Research near Darmstadt, Germany. It was named after the astronomer Nicolaus Copernicus on his 537th anniversary.
Flerovium is a synthetic chemical element; it has symbol Fl and atomic number 114. It is an extremely radioactive, superheavy element, named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dubna, Russia, where the element was discovered in 1999. The lab's name, in turn, honours Russian physicist Georgy Flyorov. IUPAC adopted the name on 30 May 2012. The name and symbol had previously been proposed for element 102 (nobelium), but was not accepted by IUPAC at that time.
Nihonium is a synthetic chemical element; it has the symbol Nh and atomic number 113. It is extremely radioactive: its most stable known isotope, nihonium-286, has a half-life of about 10 seconds. In the periodic table, nihonium is a transactinide element in the p-block. It is a member of period 7 and group 13.
Darmstadtium (110Ds) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 269Ds in 1994. There are 11 known radioisotopes from 267Ds to 281Ds and 2 or 3 known isomers. The longest-lived isotope is 281Ds with a half-life of 14 seconds. However, the unconfirmed 282Ds might have an even longer half-life of 67 seconds.
Copernicium (112Cn) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 277Cn in 1996. There are seven known radioisotopes ; the longest-lived isotope is 285Cn with a half-life of 30 seconds.
Nihonium (113Nh) is a synthetic element. Being synthetic, a standard atomic weight cannot be given and like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 284Nh as a decay product of 288Mc in 2003. The first isotope to be directly synthesized was 278Nh in 2004. There are 6 known radioisotopes from 278Nh to 286Nh, along with the unconfirmed 287Nh and 290Nh. The longest-lived isotope is 286Nh with a half-life of 9.5 seconds.
Flerovium (114Fl) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 289Fl in 1999. Flerovium has six known isotopes, along with the unconfirmed 290Fl, and possibly two nuclear isomers. The longest-lived isotope is 289Fl with a half-life of 1.9 seconds, but 290Fl may have a longer half-life of 19 seconds.
Moscovium (115Mc) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no known stable isotopes. The first isotope to be synthesized was 288Mc in 2004. There are five known radioisotopes from 286Mc to 290Mc. The longest-lived isotope is 290Mc with a half-life of 0.65 seconds.
Unbiunium, also known as eka-actinium or element 121, is a hypothetical chemical element; it has symbol Ubu and atomic number 121. Unbiunium and Ubu are the temporary systematic IUPAC name and symbol respectively, which are used until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table of the elements, it is expected to be the first of the superactinides, and the third element in the eighth period. It has attracted attention because of some predictions that it may be in the island of stability. It is also likely to be the first of a new g-block of elements.
Unbiquadium, also known as element 124 or eka-uranium, is a hypothetical chemical element; it has placeholder symbol Ubq and atomic number 124. Unbiquadium and Ubq are the temporary IUPAC name and symbol, respectively, until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table, unbiquadium is expected to be a g-block superactinide and the sixth element in the 8th period. Unbiquadium has attracted attention, as it may lie within the island of stability, leading to longer half-lives, especially for 308Ubq which is predicted to have a magic number of neutrons (184).
В свою очередь, российские физики предлагают свой вариант – ланжевений (Ln) в честь известного французского физика-теоретика прошлого столетия Ланжевена.