Plutonium-242

Last updated
Plutonium-242, 242Pu
General
Symbol 242Pu
Names plutonium-242, 242Pu, Pu-242
Protons (Z)94
Neutrons (N)148
Nuclide data
Half-life (t1/2)375000 years
Isotope mass 242.059 Da
Decay products 238U
Decay modes
Decay mode Decay energy (MeV)
Isotopes of plutonium
Complete table of nuclides
Actinides [1] by decay chain Half-life
range (a)
Fission products of 235U by yield [2]
4n 4n + 1 4n + 2 4n + 3 4.5–7%0.04–1.25%<0.001%
228 Ra 4–6 a 155 Euþ
244 Cmƒ 241 Puƒ 250 Cf 227 Ac 10–29 a 90 Sr 85 Kr 113m Cdþ
232 Uƒ 238 Puƒ 243 Cmƒ 29–97 a 137 Cs 151 Smþ 121m Sn
248 Bk [3] 249 Cfƒ 242m Amƒ141–351 a

No fission products have a half-life in the range of 100 a–210 ka ...

Contents

241 Amƒ 251 Cfƒ [4] 430–900 a
226 Ra 247 Bk1.3–1.6 ka
240 Pu 229 Th 246 Cmƒ 243 Amƒ4.7–7.4 ka
245 Cmƒ 250 Cm8.3–8.5 ka
239 Puƒ24.1 ka
230 Th 231 Pa32–76 ka
236 Npƒ 233 Uƒ 234 U 150–250 ka 99 Tc 126 Sn
248 Cm 242 Pu 327–375 ka 79 Se
1.53 Ma 93 Zr
237 Npƒ 2.1–6.5 Ma 135 Cs 107 Pd
236 U 247 Cmƒ 15–24 Ma 129 I
244 Pu 80 Ma

... nor beyond 15.7 Ma [5]

232 Th 238 U 235 Uƒ№ 0.7–14.1 Ga

Plutonium-242 (242Pu or Pu-242) is one of the isotopes of plutonium, the second longest-lived, with a half-life of 375,000 years. The half-life of 242Pu is about 15 times that of 239Pu; so it is one-fifteenth as radioactive, and not one of the larger contributors to nuclear waste radioactivity. 242Pu's gamma ray emissions are also weaker than those of the other isotopes. [6]

It is not fissile (but it is fissionable by fast neutrons) and its neutron capture cross section is also low.

In the nuclear fuel cycle

Transmutation flow in LWR Sasahara.svg
Transmutation flow in LWR

Plutonium-242 is produced by successive neutron capture on 239Pu, 240Pu, and 241Pu. The odd-mass isotopes 239Pu and 241Pu have about a 3/4 chance of undergoing fission on capture of a thermal neutron and about a 1/4 chance of retaining the neutron and becoming the following isotope. The proportion of 242Pu is low at low burnup but increases nonlinearly.

Plutonium-242 has a particularly low cross section for thermal neutron capture; and it takes three neutron absorptions to become another fissile isotope (either curium-245 or plutonium-241) and then one more neutron to undergo fission. Even then, there is a chance either of those two fissile isotopes will absorb the fourth neutron instead of fissioning, becoming curium-246 (on the way to even heavier actinides like californium, which is a neutron emitter by spontaneous fission and difficult to handle) or becoming 242Pu again, so the mean number of neutrons absorbed until fission is even higher than 4. Therefore, 242Pu is particularly unsuited to recycling in a thermal reactor and would be better used in a fast reactor where it can be fissioned directly. However, 242Pu's low cross section means that relatively little of it will be transmuted during one cycle in a thermal reactor.

Decay

Plutonium-242 mainly decays into uranium-238 via alpha decay, before continuing along the uranium series. Plutonium-242 decays via spontaneous fission in about 5.5 × 10−4% of cases [7]

Related Research Articles

The actinide or actinoid series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The informal chemical symbol An is used in general discussions of actinide chemistry to refer to any actinide.

<span class="mw-page-title-main">Berkelium</span> Chemical element, symbol Bk and atomic number 97

Berkelium is a transuranic radioactive chemical element with the symbol Bk and atomic number 97. It is a member of the actinide and transuranium element series. It is named after the city of Berkeley, California, the location of the Lawrence Berkeley National Laboratory where it was discovered in December 1949. Berkelium was the fifth transuranium element discovered after neptunium, plutonium, curium and americium.

<span class="mw-page-title-main">Curium</span> Chemical element, symbol Cm and atomic number 96

Curium is a transuranic, radioactive chemical element with the symbol Cm and atomic number 96. This actinide element was named after eminent scientists Marie and Pierre Curie, both known for their research on radioactivity. Curium was first intentionally made by the team of Glenn T. Seaborg, Ralph A. James, and Albert Ghiorso in 1944, using the cyclotron at Berkeley. They bombarded the newly discovered element plutonium with alpha particles. This was then sent to the Metallurgical Laboratory at University of Chicago where a tiny sample of curium was eventually separated and identified. The discovery was kept secret until after the end of World War II. The news was released to the public in November 1947. Most curium is produced by bombarding uranium or plutonium with neutrons in nuclear reactors – one tonne of spent nuclear fuel contains ~20 grams of curium.

In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be typified by either slow neutrons or fast neutrons. Fissile material can be used to fuel thermal-neutron reactors, fast-neutron reactors and nuclear explosives.

<span class="mw-page-title-main">Nuclear fuel cycle</span> Process of manufacturing and consuming nuclear fuel

The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.

Mixed oxide fuel, commonly referred to as MOX fuel, is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enriched uranium (LEU) fuel used in the light-water reactors that predominate nuclear power generation.

<span class="mw-page-title-main">Fertile material</span>

Fertile material is a material that, although not fissile itself, can be converted into a fissile material by neutron absorption.

Uranium (92U) is a naturally occurring radioactive element that has no stable isotope. It has two primordial isotopes, uranium-238 and uranium-235, that have long half-lives and are found in appreciable quantity in the Earth's crust. The decay product uranium-234 is also found. Other isotopes such as uranium-233 have been produced in breeder reactors. In addition to isotopes found in nature or nuclear reactors, many isotopes with far shorter half-lives have been produced, ranging from 214U to 242U. The standard atomic weight of natural uranium is 238.02891(3).

Neptunium (93Np) is usually considered an artificial element, although trace quantities are found in nature, so a standard atomic weight cannot be given. Like all trace or artificial elements, it has no stable isotopes. The first isotope to be synthesized and identified was 239Np in 1940, produced by bombarding 238
U
with neutrons to produce 239
U
, which then underwent beta decay to 239
Np
.

Plutonium (94Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long before being found in nature, the first isotope synthesized being 238Pu in 1940. Twenty plutonium radioisotopes have been characterized. The most stable are plutonium-244 with a half-life of 80.8 million years, plutonium-242 with a half-life of 373,300 years, and plutonium-239 with a half-life of 24,110 years. All of the remaining radioactive isotopes have half-lives that are less than 7,000 years. This element also has eight meta states; all have half-lives of less than one second.

Americium (95Am) is an artificial element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no known stable isotopes. The first isotope to be synthesized was 241Am in 1944. The artificial element decays by ejecting alpha particles. Americium has an atomic number of 95. Despite 243
Am
being an order of magnitude longer lived than 241
Am
, the former is harder to obtain than the latter as more of it is present in spent nuclear fuel.

<span class="mw-page-title-main">Minor actinide</span> Category of elements in spent nuclear fuel

The minor actinides are the actinide elements in used nuclear fuel other than uranium and plutonium, which are termed the major actinides. The minor actinides include neptunium, americium, curium, berkelium, californium, einsteinium, and fermium. The most important isotopes of these elements in spent nuclear fuel are neptunium-237, americium-241, americium-243, curium-242 through -248, and californium-249 through -252.

<span class="mw-page-title-main">Sodium-cooled fast reactor</span> Type of nuclear reactor cooled by molten sodium

A sodium-cooled fast reactor is a fast neutron reactor cooled by liquid sodium.

<span class="mw-page-title-main">Thorium fuel cycle</span> Nuclear fuel cycle

The thorium fuel cycle is a nuclear fuel cycle that uses an isotope of thorium, 232
Th
, as the fertile material. In the reactor, 232
Th
is transmuted into the fissile artificial uranium isotope 233
U
which is the nuclear fuel. Unlike natural uranium, natural thorium contains only trace amounts of fissile material, which are insufficient to initiate a nuclear chain reaction. Additional fissile material or another neutron source is necessary to initiate the fuel cycle. In a thorium-fuelled reactor, 232
Th
absorbs neutrons to produce 233
U
. This parallels the process in uranium breeder reactors whereby fertile 238
U
absorbs neutrons to form fissile 239
Pu
. Depending on the design of the reactor and fuel cycle, the generated 233
U
either fissions in situ or is chemically separated from the used nuclear fuel and formed into new nuclear fuel.

<span class="mw-page-title-main">Weapons-grade nuclear material</span> Nuclear material pure enough to be used for nuclear weapons

Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon or has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nuclear weapons are the most common examples.

Plutonium-241 is an isotope of plutonium formed when plutonium-240 captures a neutron. Like some other plutonium isotopes, 241Pu is fissile, with a neutron absorption cross section about one-third greater than that of 239Pu, and a similar probability of fissioning on neutron absorption, around 73%. In the non-fission case, neutron capture produces plutonium-242. In general, isotopes with an odd number of neutrons are both more likely to absorb a neutron, and more likely to undergo fission on neutron absorption, than isotopes with an even number of neutrons.

Uranium-236 (236U) is an isotope of uranium that is neither fissile with thermal neutrons, nor very good fertile material, but is generally considered a nuisance and long-lived radioactive waste. It is found in spent nuclear fuel and in the reprocessed uranium made from spent nuclear fuel.

Nuclear fission splits a heavy nucleus such as uranium or plutonium into two lighter nuclei, which are called fission products. Yield refers to the fraction of a fission product produced per fission.

Long-lived fission products (LLFPs) are radioactive materials with a long half-life produced by nuclear fission of uranium and plutonium. Because of their persistent radiotoxicity, it is necessary to isolate them from humans and the biosphere and to confine them in nuclear waste repositories for geological periods of time.

<span class="mw-page-title-main">Nuclear transmutation</span> Conversion of an atom from one element to another

Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed.

References

  1. Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here.
  2. Specifically from thermal neutron fission of uranium-235, e.g. in a typical nuclear reactor.
  3. Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4.
    "The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk248 with a half-life greater than 9 [years]. No growth of Cf248 was detected, and a lower limit for the β half-life can be set at about 104 [years]. No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 [years]."
  4. This is the heaviest nuclide with a half-life of at least four years before the "sea of instability".
  5. Excluding those "classically stable" nuclides with half-lives significantly in excess of 232Th; e.g., while 113mCd has a half-life of only fourteen years, that of 113Cd is nearly eight quadrillion years.
  6. "PLUTONIUM ISOTOPIC RESULTS OF KNOWN SAMPLES USING THE SNAP GAMMA SPECTROSCOPY ANALYSIS CODE AND THE ROBWIN SPECTRUM FITTING ROUTINE" (PDF). Archived from the original (PDF) on 2017-08-13. Retrieved 2013-03-15.
  7. Chart of all nuclei which includes half life and mode of decay