List of nuclides

Last updated

This list of nuclides shows observed nuclides that either are stable or, if radioactive, have half-lives longer than one hour. This includes isotopes of the first 105 elements, except for 87 (francium), 102 (nobelium) and 104 (rutherfordium). At least 3,300 nuclides have been experimentally characterized [1] - this page presently includes 987.

Contents

Introduction

There are presently 251 known stable nuclides. Many of these in theory could decay through spontaneous fission, alpha decay, double beta decay, etc. with a very long half-life, but this has not yet been observed. Thus, the number of stable nuclides is subject to change if some of these 251 have radioactive decay observed in the future. In this article, the "stable" nuclides are divided into three tables: one for nuclides that are theoretically stable (meaning no decay mode is possible) except to spontaneous fission, which is not considered plausible in this mass range; one for nuclides that can theoretically undergo forms of decay other than spontaneous fission but have no published lower bound on lifetime from experimental evaluations; and one for nuclides that can theoretically decay and have been examined without detecting any decay, allowing a lower bound to be published. In this last table, where a decay has been predicted theoretically but never observed experimentally (either directly or by finding an excess of the daughter), the theoretical decay mode is given in parentheses, and "> (lifetime in years)" is shown in the half-life column to show this lower limit in scientific notation. Such nuclides are considered to be "stable", also called "observationally stable" indicating the tentative nature of the conclusion, until some decay has been observed. For example, tellurium-123 was reported to be radioactive, but the same experimental group later retracted this report, and it is again listed as stable.

The next group is the primordial radioactive nuclides. These have been measured to be radioactive, or decay products have been identified in natural samples (tellurium-128, barium-130). There are 35 of these (see these nuclides), of which 25 have half-lives longer than 1013 years. For most of these 25, decay is difficult to observe, and for most purposes they can be regarded as effectively stable. Bismuth-209 is notable as it is the only naturally occurring isotope of an element long considered stable. The other 10, platinum-190, samarium-147, lanthanum-138, rubidium-87, rhenium-187, lutetium-176, thorium-232, uranium-238, potassium-40, and uranium-235, have half-lives between 7×108 and 5×1011 years, which means they have undergone at least 0.5% depletion since the formation of the Solar System about 4.6×109 years ago, but still exist on Earth in significant quantities. They are the primary source of radiogenic heating and radioactive decay products. Together, there are a total of 286 primordial nuclides. [a]

The list then covers the other radionuclides with half-lives longer than 1 hour, split into several tables in order of successively shorter lifetimes.

Some nuclides that have half-lives too short to be primordial can be detected in nature as a result of later production by natural processes, mostly in trace amounts. These include radionuclides occurring in the decay chains of primordial uranium and thorium (radiogenic nuclides), such as radon-222. Others are the products of interactions with energetic cosmic rays (the cosmogenic nuclides), such as carbon-14. This gives a total of about 350 naturally occurring nuclides, some of which are difficult to detect. Other nuclides may be occasionally produced naturally by rare cosmogenic interactions or as a result of other natural nuclear reactions (nucleogenic nuclides), and these are generally even less detectable.

Non-primordial nuclides may also be detected in the spectra of stars; technetium is well established, [3] and others have been claimed. The remaining nuclides are known solely from artificial nuclear transmutations. Some, such as caesium-137 and krypton-85, are detected in the environment, but only (or practically only) from deliberate or accidental release of artificial production, as fission products (from nuclear weapons or nuclear reactors), for industrial or medical uses, or otherwise.

List legend

Each group of radionuclides, starting with the longest-lived primordial radionuclides, is sorted by decreasing half-life, but the tables are sortable by other columns. All columns sort by usual lexicographical order; in the case of the nuclide column this gives order on the mass number A.

No. (number) column
A running positive integer for reference, equal to the position in the tables. This number may change in the future, especially for nuclides with short lives, as better half-life estimates become available.
Nuclide column
Nuclide identifiers are given by their atomic mass number A and the symbol for the corresponding chemical element (corresponding to the unique proton number). In the cases that this is not the ground state, this is indicated by a m for metastable appended to the mass number; the conventional numbers are further appended to distinguish multiple metastable states but '1' is omitted if the others are much less stable.
A, Z, N columns
The total number of protons and neutrons together (A) and the separate numbers of protons (Z) and of neutrons (N).
Energy column
The column labeled "energy" denotes the energy equivalent of the mass of a neutron minus the mass per nucleon of this nuclide (so all nuclides have a positive value) in MeV, formally: mnmnuclide / A, where A = Z + N is the mass number. Note that this means that a higher "energy" value actually means that the nuclide has a lower energy. The mass of the nuclide (in daltons) is A (mnE / k) where E is the energy, mn is 1.008664916 Da and k = 931.49410242 the conversion factor between MeV and daltons.
Half-life column
The first column shows times in seconds; the second column in the more usual units (years, days, hours). As the first column is converted from the second, it is given enough digits to ensure consistent sorting.
Entries starting with a ">" indicates that no decay has ever been observed, with experiments having established lower limits on the half-life. Such elements are considered stable unless decay is observed (establishing an actual estimate for the half-life). Half-lives are imprecise estimates and may be subject to significant revision. When shown to a smaller than usual number of significant figures, it is not known accurately enough to justify more.
Decay mode column
α α decay
β β decay
ββ double β decay
ε electron capture
β+ β+ decay
β+β+ double β+ decay
SF spontaneous fission
IT isomeric transition
Decay modes in parentheses are given for observationally stable nuclides (these and these); they are then those allowed to occur by energy (in the next column), but spontaneous fission (and cluster decay, which is never shown in this table) are neglected as they should never be observed for any of those. Nuclides with multiple significant decay modes have the probability of each decay mode in percent given, in small figures, in parentheses; those less than 0.05% are rounded to zero and omitted, and 100 (>99.5% of observed decays) is not used but replaced by bold unless the only other decays are SF or double beta, assumed to be minority decays if not listed first. If more than one of α, β, β+/ε, IT is given without numbers or bold, one can assume no experimental data is available. Note that, by widely used convention, β+ (technically positron emission) includes ε, and conversely, if positron emission is energetically possible; the two are never separated on this page.
Decay energy column
Multiple values for (maximal) decay energy for each given decay mode, in respective order. The decay energy listed is for the specific nuclide only, not for the whole decay chain. It includes energy lost to neutrinos.
Notes column
CG
Cosmogenic nuclide.
DP
Naturally occurring decay product (of thorium-232, uranium-238, or uranium-235), including products of neutron reactions other than fission.
ESS
Present in the early Solar System (first few million years), but extinct now as a primordial nuclide. Inherently overlaps with cosmogenic nuclides.
FP
Nuclear fission product [b] - may occur naturally from spontaneous fission.
IM
Industry or medically used radionuclide. [4]

Of the 701 non-primordial nuclides in the tables below, 101 have the label FP (99 true fission products), 65 IM, 32 DP, 24 CG, 13 ESS, and 7 both CG and ESS.

Full list

Theoretically stable nuclides

These are the theoretically stable nuclides, ordered by "energy".

No.NuclideAZNEnergy
(MeV)
1 56Fe 5626309.153567
2 62Ni 6228349.147877
3 60Ni 6028329.145862
4 58Fe 5826329.142938
5 52Cr 5224289.137037
6 57Fe 5726319.127119
7 59Co 5927329.126046
8 54Cr 5424309.125633
9 61Ni 6128339.124129
10 55Mn 5525309.120611
11 64Ni 6428369.119754
12 66Zn 6630369.115258
13 53Cr 5324299.114435
14 63Cu 6329349.112272
15 65Cu 6529369.106154
16 68Zn 6830389.100845
17 50Ti 5022289.099861
18 51V 5123289.094884
19 67Zn 6730379.084468
20 48Ti 4822269.081488
21 72Ge 7232409.079465
22 70Ge 7032389.079372
23 69Ga 6931389.076078
24 88Sr 8838509.070438
25 74Ge 7432429.063522
26 49Ti 4922279.062323
27 76Se 7634429.061485
28 71Ga 7131409.059218
29 78Se 7834449.058842
30 90Zr 9040509.057631
31 89Y 8939509.056743
32 86Sr 8638489.054160
33 82Kr 8236469.054126
34 84Kr 8436489.052649
35 73Ge 7332419.048006
36 87Sr 8738499.046964
37 75As 7533429.045093
38 80Kr 8036449.044984
39 77Se 7734439.040153
40 85Rb 8537489.037998
41 91Zr 9140519.037156
42 83Kr 8336479.034966
43 79Br 7935449.034220
44 81Br 8135469.033979
45 92Zr 9240529.032783
46 46Ti 4622249.030532
47 47Ti 4722259.027336
48 44Ca 4420249.013793
49 94Mo 9442529.011856
50 93Nb 9341529.009051
51 96Mo 9642548.996229
52 95Mo 9542538.994564
53 42Ca 4220228.989116
54 38Ar 3818208.984870
55 45Sc 4521248.983945
56 97Mo 9742558.973806
57 98Ru 9844548.971572
58 43Ca 4320238.964551
59 100Ru 10044568.963517
60 99Ru 9944558.956348
61 34S 3416188.951675
62 40Ar 4018228.947325
63 102Ru 10244588.944837
64 101Ru 10144578.942117
65 41K 4119228.938623
66 39K 3919208.938174
67 104Pd 10446588.930847
68 37Cl 3717208.929760
69 103Rh 10345588.925910
70 36S 3616208.923108
71 106Pd 10646608.919460
72 105Pd 10546598.913356
73 35Cl 3517188.900285
74 108Pd 10846628.900253
75 107Ag 10747608.897514
76 110Cd 11048628.892718
77 30Si 3014168.885761
78 109Ag 10947628.885300
79 32S 3216168.884318
80 33S 3316178.876964
81 31P 3115168.859744
82 28Si 2814148.838935
83 29Si 2914158.826327
84 112Cd 11248648.880077
85 111Cd 11148638.875445
86 114Sn 11450648.865722
87 113In 11349648.862212
88 116Sn 11650668.860362
89 115Sn 11550658.854249
90 118Sn 11850688.848073
91 117Sn 11750678.843977
92 120Sn 12050708.830537
93 119Sn 11950698.828201
94 121Sb 12151708.811783
95 122Te 12252708.811606
96 124Te 12452728.801364
97 123Sb 12351728.796727
98 126Te 12652748.786126
99 125Te 12552738.783505
100 128Xe 12854748.773359
101 127I 12753748.771981
102 130Xe 13054768.762725
103 129Xe 12954758.758904
104 132Xe 13254788.747695
105 131Xe 13154778.746253
106 134Ba 13456788.735133
107 133Cs 13355788.733515
108 136Ba 13656808.724908
109 135Ba 13556798.722072
110 137Ba 13756818.711628
111 138Ba 13856828.710904
112 27Al 2713148.708242
113 140Ce 14058828.700494
114 139La 13957828.698892
115 26Mg 2612148.694981
116 141Pr 14159828.681405
117 142Nd 14260828.676646
118 24Mg 2412128.651911
119 25Mg 2512138.599047
120 156Gd 15664928.536342
121 157Gd 15764938.522478
122 158Gd 15864948.518775
123 159Tb 15965948.508680
124 23Na 2311128.485675
125 163Dy 16366978.478607
126 164Dy 16466988.473604
127 22Ne 2210128.436087
128 20Ne 2010108.423422
129 16O 16888.367390
130 21Ne 2110118.344280
131 19F 199108.149612
132 17O 17898.118904
133 18O 188108.114744
134 12C 12668.071327
135 15N 15788.064594
136 14N 14777.866827
137 13C 13677.830943
138 4He 4227.465077
139 11B 11567.283337
140 10B 10556.866257
141 9Be 9456.810483
142 7Li 7345.941599
143 6Li 6335.723527
144 3He 3213.094327
145 2H 2111.503327
146 1H 1100.782327

Observationally stable nuclides having theoretical decay modes other than spontaneous fission (no lower bounds)

Ordered by "energy".

No.NuclideAZNEnergyDecay modeDecay energy
(MeV)
147 80Se 8034469.043326β)0.134
148 86Kr 8636509.039532β)1.256
149 84Sr 8438469.031375+β+)1.787
150 102Pd 10246568.933337+β+)1.172
151 36Ar 3618188.911105+β+)0.433
152 122Sn 12250728.808590β)0.366
153 150Sm 15062888.585043(α)1.449
154 152Sm 15262908.563227(α)0.220
155 154Gd 15464908.549985(α)0.081
156 155Gd 15564918.536341(α)0.081
157 164Er 16468968.473462+β+, α)0.024, 1.304
158 165Ho 16567988.464689(α)0.139
159 166Er 16668988.462482(α)0.831
160 167Er 16768998.450350(α)0.666
161 168Er 168681008.446308(α)0.553
162 169Tm 169691008.433931(α)1.200
163 170Yb 170701008.428792(α)1.738
164 171Yb 171701018.418182(α)1.559
165 172Yb 172701028.415864(α)1.310
166 173Yb 173701038.404023(α)0.946
167 174Yb 174701048.398624(α)0.740
168 175Lu 175711048.386589(α)1.620
169 181Ta 181731088.338961(α)1.526
170 185Re 185751108.308204(α)2.195
171 191Ir 191771148.263508(α)2.084
172 194Pt 194781168.250519(α)1.504
173 193Ir 193771168.250259(α)1.017
174 195Pt 195781178.239516(α)1.158
175 196Pt 196781188.237896(α)0.794
176 197Au 197791188.229404(α)0.954
177 198Hg 198801188.227663(α)1.383
178 199Hg 199801198.219805(α)0.824
179 200Hg 200801208.218848(α)0.718
180 201Hg 201801218.208956(α)0.334
181 202Hg 202801228.206703(α)0.136
182 203Tl 203811228.198230(α)0.911
183 204Hg 204801248.192358β)0.416
184 205Tl 205811248.187526(α)0.157

Observationally stable nuclides having theoretical decay modes other than spontaneous fission, for which those decays have experimental lower bounds

Ordered by the given lower bound on half-life. This should not be considered authoritative without consulting the original source (footnote) as exactly what was measured and how are not reflected here, and some of the values may be misinterpretations. Further, in all cases, this is not an indicator of the probable half-life, which may be much longer (especially for alpha decay), but only the experiment's ability to measure it.

Lower bounds without a specific footnote from:

No.NuclideAZNEnergyHalf-life
(seconds)
Half-life
(years) [c]
Decay modeDecay energy
(MeV)
185 134Xe 13454808.728973>8.8×1029>2.8×1022 [5] β)0.825
186 40Ca 4020208.942485>3.1×1029>9.9×1021+β+)0.194
187 184W 184741108.319737>2.8×1029>8.9×1021(α)1.656
188 182W 182741088.336424>2.4×1029>7.7×1021(α)1.772
189 208Pb 208821268.175888>8.2×1028>2.6×1021(α)0.519
190 206Pb 206821248.186791>7.9×1028>2.5×1021(α)1.137
191 126Xe 12654728.779010>6.0×1028>1.9×1021 [6] +β+)0.897
192 207Pb 207821258.179791>6.0×1028>1.9×1021(α)0.391
193 120Te 12052688.816369>5.0×1028>1.6×1021+β+)1.700
194 106Cd 10648588.893327>3.5×1028>1.1×1021+β+)2.770
195 58Ni 5828309.109736>2.2×1028>7.0×1020+β+)1.926
196 183W 183741098.324699>2.1×1028>6.7×1020(α)1.680
197 104Ru 10444608.918337>2.0×1028>6.5×1020 [7] β)1.300
198 54Fe 5426289.113040>1.4×1028>4.4×1020 [8] +β+)0.680
199 132Ba 13256768.741288>9.5×1027>3.0×1020+β+)0.846
200 110Pd 11046648.874500>9.1×1027>2.9×1020β)2.000
201 92Mo 9242509.014860>6.0×1027>1.9×1020+β+)1.649
202 204Pb 204821228.194414>4.4×1027>1.4×1020 [9] (α)1.972
203 112Sn 11250628.862944>3.1×1027>9.7×1019 [10] +β+)1.922
204 96Ru 9644528.967911>2.5×1027>8.0×1019+β+)2.719
205 192Os 192761168.258202>1.7×1027>5.3×1019β, α)0.413, 0.362
206 198Pt 198781208.222378>1.0×1027>3.2×1019 [11] β, α)1.047, 0.087
207 160Gd 16064968.496009>9.8×1026>3.1×1019β)1.729
208 144Sm 14462828.640577>4.4×1026>1.4×1019 [12] +β+)1.781
209 190Os 190761148.275045>3.8×1026>1.2×1019 [13] (α)1.378
210 64Zn 6430349.102634>3.5×1026>1.1×1019 [14] +β+)1.096
211 74Se 7434409.047175>2.2×1026>7.0×1018 [15] +β+)1.209
212 186W 186741128.299873>1.3×1026>4.1×1018β, α)0.491, 1.123
213 70Zn 7030409.065109>1.2×1026>3.8×1018β)0.998
214 188Os 188761128.290138>1.0×1026>3.3×1018 [13] (α)2.143
215 143Nd 14360838.658792>9.8×1025>3.1×1018(α)0.521
216 148Nd 14860888.594388>9.5×1025>3.0×1018β, α)1.929, 0.599
217 142Ce 14258848.666666>9.1×1025>2.9×1018β, α)1.417, 1.298
218 179Hf 179721078.353293>8.5×1025>2.7×1018 [16] (α)1.806
219 196Hg 196801168.233710>7.9×1025>2.5×1018+β+, α)0.820, 2.027
220 154Sm 15462928.541857>7.3×1025>2.3×1018β)1.251
221 146Nd 14660868.625649>5.0×1025>1.6×1018β, α)0.070, 1.182
222 50Cr 5024269.076517>4.1×1025>1.3×1018+β+)1.167
223 178Hf 178721068.365958>4.1×1025>1.3×1018 [16] (α)2.083
224 177Hf 177721058.370139>3.5×1025>1.1×1018 [16] (α)2.245
225 156Dy 15666908.523443>3.2×1025>1.0×1018 [n 1] +β+, α)2.011, 1.758
226 153Eu 15363908.550893>1.8×1025>5.5×1017(α)0.274
227 180Hf 180721088.347930>1.5×1025>4.6×1017 [16] (α)1.283
228 108Cd 10848608.897735>1.3×1025>4.1×1017+β+)0.272
229 170Er 170681028.424945>1.3×1025>4.1×1017β, α)0.654, 0.050
230 138Ce 13858808.705878>1.3×1025>4.0×1017 [18] +β+)0.694
231 180mTa 180731078.342767>9.1×1024>2.9×1017 [19] , ε, IT, α)0.783, 0.929, 0.077, 2.103
232 176Hf 176721048.381427>8.5×1024>2.7×1017 [16] (α)2.255
233 46Ca 4620269.009047>5.7×1024>1.8×1017 [20] β)0.988
234 176Yb 176701068.375271>5.0×1024>1.6×1017β, α)1.083, 0.570
235 94Zr 9440548.999698>3.5×1024>1.1×1017β)1.144
236 124Sn 12450748.782914>3.2×1024>1.0×1017β)2.287
237 162Dy 16266968.492234>3.2×1024>1.0×1017 [17] (α)0.085
238 136Ce 13658788.707122>3.0×1024>9.6×1016 [18] +β+)2.419
239 114Cd 11448668.860985>2.9×1024>9.2×1016β)0.540
240 123Te 12352718.796302>2.9×1024>9.2×1016 [21] (ε)0.052
241 145Nd 14560858.632963>1.9×1024>6.0×1016(α)1.578
242 192Pt 192781148.260353>1.9×1024>6.0×1016(α)2.418
243 161Dy 16166958.494067>1.1×1024>3.5×1016 [17] (α)0.344
244 160Dy 16066948.506816>2.7×1023>8.5×1015 [17] (α)0.439
245 189Os 189761138.277599>1.1×1023>3.5×1015 [13] (α)1.976
246 187Os 187761118.291746>1.0×1023>3.2×1015 [13] (α)2.720
247 149Sm 14962878.589058>6.3×1022>2.0×1015(α)1.870
248 158Dy 15866928.516973>3.2×1022>1.0×1015 [17] +β+, α)0.283, 0.875
249 162Er 16268948.480852>4.4×1021>1.4×1014+β+, α)1.844, 1.646
250 168Yb 16870988.437845>4.1×1021>1.3×1014+β+, α)1.422, 1.951
251 98Mo 9842568.970426>3.2×1021>1.0×1014β)0.112
  1. Nubase value, for alpha decay only. Double electron capture limited only to 6.1×1014 (ground state) by [17]

Primordial radioactive nuclides (half-life > 108 years)

Ordered by half-life, those without a specific footnote from

No.NuclideAZNEnergyHalf-life
(seconds)
Half-life
(years) [c]
Decay modeDecay energy
(MeV)
252 128Te 12852768.7432617.10×10312.25×1024ββ0.868
253 124Xe 12454708.7782643.47×10291.1×1022 [22] εε2.864
254 78Kr 7836429.0223492.90×10299.2×1021εε2.846
255 136Xe 13654828.7068056.88×10282.18×1021ββ2.462
256 76Ge 7632449.0346566.375×10282.02×1021ββ2.039
257 130Ba 13056748.7425743.2×10281×1021 [n 1] εε2.620
258 130Te 13052788.7665782.496×10287.9×1020ββ2.530
259 82Se 8234489.0175962.764×10278.76×1019ββ2.995
260 48Ca 4820288.9924521.767×10275.6×1019ββ4.274
261 116Cd 11648688.8361468.489×10262.69×1019ββ2.809
262 209Bi 209831268.1586896.343×10262.01×1019α3.137
263 96Zr 9640568.9613597.384×10262.34×1019ββ3.348
264 150Nd 15060908.5625942.935×10269.3×1018ββ3.367
265 100Mo 10042588.9331672.231×10267.07×1018ββ3.035
266 151Eu 15163888.5657591.452×10264.6×1018α1.964
267 180W 180741068.3471275.018×10251.59×1018 [25] α2.509
268 50V 5023279.0557598.552×10242.71×1017β+ [n 2] 2.205
269 174Hf 174721028.3922871.199×10243.8×1016 [26] α2.497
270 113Cd 11348658.8593722.537×10238.04×1015β0.321
271 148Sm 14862868.6074231.988×10236.3×1015α1.986
272 144Nd 14460848.6529477.227×10222.29×1015α1.905
273 186Os 186761108.3025086.3×10222.0×1015α2.823
274 115In 11549668.8499101.392×10224.41×1014β0.499
275 152Gd 15264888.5628683.408×10211.08×1014α2.203
276 184Os 184761088.3118503.53×10201.12×1013α2.963
277 190Pt 190781128.2677641.524×10194.83×1011α3.252
278 147Sm 14762858.6105933.364×10181.066×1011α2.310
279 138La 13857818.6983203.250×10181.03×1011β+(65), β(35)1.737, 1.044
280 87Rb 8737509.0437181.568×10184.97×1010β0.283
281 187Re 187751128.2917321.313×10184.16×1010β0.0026
282 176Lu 176711058.3746651.168×10183.70×1010β [n 3] 1.193
283 232Th 232901427.9185334.418×10171.40×1010α, SF4.083
284 238U 238921467.8725511.408×10174.463×109α, SF, ββ4.270, 1.145
285 40K 4019218.9097073.938×10161.248×109β(89), β+(11)1.311, 1.505
286 235U 235921437.8971982.222×10167.04×108α, SF4.679
  1. The two experimental values [23] [24] are discordant, with a total range of (0.5–2.7)×1021 years; the value in the table is a rough average.
  2. Also theoretically capable of β decay
  3. Theoretically capable of electron capture [27]

Radionuclides with half-lives of 104 years to 108 years

Ordered by half-life. Some of these are known to have been present in the early Solar System (marked "ESS", meaning the first few million years of the Solar System's history) from an excess of their decay products. [28]

No.NuclideZNEnergyHalf-life
(seconds)
Half-life
(years) [c]
Decay modeNotes
287 146Sm 62848.6261362.903×10159.20×107 [2] αESS [28]
288 244Pu 941507.8262212.566×10158.13×107α, SF (0.12)interstellar, [29] ESS [28]
289 92Nb 41519.0109801.095×10153.47×107β+CG, [30] ESS [28]
290 236U 921447.8914707.391×10142.342×107α, SFDP
291 205Pb 821238.1872795.365×10141.70×107β+ESS [28]
292 129I 53768.7573975.093×10141.614×107βCG, FP, ESS [28]
293 247Cm 961517.8060084.923×10141.56×107αESS [28]
294 182Hf 721108.3243992.809×10148.90×106βESS [28]
295 107Pd 46618.8971972.051×10146.5×106βFP, ESS [28]
296 97Tc 43548.9705031.329×10144.21×106β+
297 98Tc 43558.9532461.325×10144.2×106β
298 53Mn 25289.1031751.168×10143.7×106β+CG, ESS [28]
299 210mBi 831278.1404739.594×10133.04×106α
300 60Fe 26349.0948618.268×10132.62×106βCG, [31] interstellar, [32] ESS [28]
301 237Np 931447.8819896.766×10132.144×106α, SFDP
302 150Gd 64868.5764545.649×10131.79×106α
303 93Zr 40539.0080695.081×10131.61×106βFP
304 154Dy 66888.5284574.418×10131.40×106 [33] α
305 10Be 466.8106574.377×10131.387×106βCG, ESS [28]
306 135Cs 55808.7200824.197×10131.33×106βFP
307 26Al 13138.5409542.263×10137.17×105β+CG, ESS [28]
308 242Pu 941487.8452181.183×10133.75×105α, SF
309 208Bi 831258.1620491.161×10133.68×105β+
310 248Cm 961527.7995861.098×10133.48×105α (92), SF (8.4)
311 79Se 34459.0323101.032×10133.3×105βFP
312 36Cl 17198.8913809.499×10123.01×105β(98), β+(1.9)CG, IM
313 234U 921427.9083087.747×10122.455×105α, SFDP
314 126Sn 50768.7540267.258×10122.3×105βFP
315 81Kr 36459.0305137.227×10122.29×105β+CG
316 99Tc 43568.9533796.662×10122.111×105βFP
317 186mRe 751118.2959586.312×10122×105IT
318 233U 921417.9128735.024×10121.592×105α, SFDP
319 236Np 931437.8875144.828×10121.53×105β+(86), β(14), α (0.16)
320 41Ca 20218.9283473.137×10129.9×104β+CG, ESS [28]
321 59Ni 28319.1078632.556×10128.1×104β+
322 230Th 901407.9371362.379×10127.54×104α, SFDP
323 137La 57808.7071011.893×10126×104β+
324 202Pb 821208.1997141.657×10125.25×104β+
325 231Pa 911407.9266271.030×10123.27×104α, SFDP
326 239Pu 941457.8680227.609×10112.411×104α, SFDP, IM
327 94Nb 41538.9900996.438×10112.04×104βCG [30]

Radionuclides with half-lives of 10 years to 104 years

Ordered by half-life.

No.NuclideZNEnergyHalf-life
(seconds)
Half-life
(years) [c]
Decay modeNotes
328 250Cm 961547.7793712.62×10118300 [n 1] SF, α, β
329 245Cm 961497.8223292.60×10118250α, SF
330 229Th 901397.9421272.498×10117920αDP
331 243Am 951487.8360352.319×10117350α, SF
332 240Pu 941467.8624652.070×10116561α, SF
333 14C 687.8556201.799×10115700βCG, IM
334 93Mo 42519.0046931.53×10114839 [35] β+
335 246Cm 961507.8167811.485×10114700α, SF
336 163Ho 67968.4785911.442×10114570β+
337 226Ra 881387.9665975.049×10101600αDP
338 247Bk 971507.8061824.35×10101380α, SF
339 166mHo 67998.4512733.574×10101133β
340 251Cf 981537.7759692.83×1010900α, SF
341 91Nb 41509.0233272.15×1010680β+
342 194Hg 801148.2372711.41×1010450β+
343 108mAg 47618.8814391.385×1010439β+(91), IT (8.7)
344 241Am 951467.8516761.364×1010432.6α, SFIM
345 249Cf 981517.7913051.108×1010351α, SF
346 39Ar 18218.9236868.457×109268 [n 2] βCG
347 192m2Ir 771158.2518757.605×109241IT
348 158Tb 65938.5110555.68×109180β+(83), β(17)
349 32Si 14188.8238564.95×109157βCG
350 242mAm 951477.8419134.450×109141IT, α (0.46), SF
351 209Po 841258.1496333.913×109124α, β+(0.45)
352 63Ni 28359.1112103.194×109101βIM
353 151Sm 62898.5652512.985×10994.6βFP
354 238Pu 941447.8773582.768×10987.7α, SFDP, IM
355 148Gd 64848.5867062.74×10986.9 [36] α
356 157Tb 65928.5220962.24×10971β+
357 232U 921407.9221432.174×10968.9α, SF
358 44Ti 22228.9247021.865×10959.1β+
359 193Pt 781158.2499651.58×10950β+
360 121mSn 50718.8084991.385×10943.9IT (78), β(22)FP
361 150Eu 63878.5699741.164×10936.9β+
362 42Ar 18248.8909231.038×10932.9β
363 207Bi 831248.1682099.852×10831.22β+
364 178m2Hf 721069.783×10831IT
365 137Cs 55828.7030479.480×10830.04βFP, IM
366 243Cm 961477.8360049.183×10829.1α, β+(0.3), SF
367 90Sr 38529.0262399.123×10828.91βFP, IM
368 210Pb 821288.1414627.006×10822.2β, αDP, IM
369 227Ac 891387.9574476.871×10821.77β(99), α (1.4)DP
370 244Cm 961487.8317635.715×10818.11α, SF
371 145Pm 61848.6318385.586×10817.7β+, α
372 93mNb 41525.087×10816.1ITFP
373 241Pu 941477.8515904.522×10814.33β, α, SF
374 113mCd 48654.383×10813.9β, IT (0.10)FP
375 152Eu 63898.5508974.266×10813.52β+(72), β(28)
376 250Cf 981527.7866404.128×10813.08α, SF (0.08)
377 3H 123.0879943.888×10812.32βCG, IM
378 85Kr 36499.0299193.385×10810.73βFP, IM
379 133Ba 56778.7296243.326×10810.54β+
  1. Only SF has been observed with a half-life 11,300 years; the value given theoretically estimates alpha- and beta-decay branches, which is quite uncertain. [34]
  2. Nubase value. However, a recent direct study: P. Adhikari; et al. (2025). "Direct Measurement of the Half-Life of 39Ar from 3.4 Years of Data with the DEAP-3600 Detector". The European Physical Journal C . 85 (7): 728. doi:10.1140/epjc/s10052-025-14289-5. found 302 years, a statistically significant discrepancy to be explained.

Radionuclide with unknown half-life

No decay has been observed, but not primordial so does not qualify as "observationally stable".

No.NuclideZNEnergy
(MeV)
Half-life
(seconds)
Half-life
(years) [c]
Decay modesNotes
380 248Bk 971517.796811>2.84×108> 9 yα, β, β+

Radionuclides with half-lives of 1 day to 10 years

Ordered by half-life. The second half-life column in this table has been made unsortable, as the mixture of days and years will not sort properly. Resorting by half-life may be done no less by using the number or the half-life in seconds columns.

No.NuclideZNEnergyHalf-life
(seconds)
Half-life
[c]
Decay modeNotes
381 154Eu 63918.5372002.711×1088.59 yβ, β+FP
382 194Os 761188.2385081.893×1086.0 yβ
383 228Ra 881407.9443901.815×1085.75 yβDP
384 146Pm 61858.6155741.745×1085.53 yβ+(66), β(34)
385 60Co 27339.0988111.664×1085.27 yβIM
386 155Eu 63928.5347111.496×1084.74 yβFP
387 101Rh 45568.9367531.284×1084.07 yβ+
388 204Tl 811238.1906711.194×1083.78 yβ(97), β+(2.9)IM
389 102mRh 45578.9206801.181×1083.74 yβ+, IT (0.2)
390 174Lu 711038.3907261.045×1083.31 yβ+
391 208Po 841248.1553159.145×1072.898 yα, β+
392 236Pu 941427.8895369.019×1072.858 yα, SF
393 125Sb 51748.7773678.705×1072.759 yβFP
394 55Fe 26299.1164078.698×1072.756 yβ+
395 252Cf 981547.7696058.347×1072.645 yα (97), SF (3.1)IM
396 147Pm 61868.6090688.279×1072.623 yβFP
397 22Na 11118.3068918.211×1072.602 yβ+CG
398 134Cs 55798.7197686.517×1072.065 yβ, β+FP
399 171Tm 691028.4176206.059×1071.92 yβ
400 228Th 901387.9539066.035×1071.913 yαDP
401 172Hf 721008.3992525.901×1071.87 yβ+
402 179Ta 731068.3527035.743×1071.82 yβ+
403 173Lu 711028.4001474.323×1071.37 yβ+
404 252Es 991537.7646214.075×1071.291 yα (78), β+(22)
405 109Cd 48618.8833273.986×1071.263 yβ+
406 235Np 931427.8966693.422×1071.084 yβ+, α
407 106Ru 44628.8856863.212×1071.018 yβFP
408 144Pm 61838.6367513.136×1070.99 yβ+
409 145Sm 62838.6275902.938×107340 dβ+
410 248Cf 981507.8001982.881×107333.5 dα, SF
411 49V 23269.0500402.851×107330 dβ+
412 249Bk 971527.7908052.827×107327.2 dβ, α, SF
413 54Mn 25299.1001312.696×107312.08 dβ+, βIM
414 119mSn 50692.532×107293.1 dITFP
415 144Ce 58868.6299182.461×107284.89 dβFP
416 254Es 991557.7485242.382×107275.7 dα, β, SF
417 57Co 27309.1124542.348×107271.81 dβ+IM
418 68Ge 32369.0563272.342×107271.05 dβ+IM
419 143Pm 61828.6515092.290×107265 dβ+
420 110m2Ag 47638.8653552.159×107249.86 dβ(99), IT (1.3)IM
421 65Zn 30359.0853522.108×107243.94 dβ+IM
422 153Gd 64898.5477312.079×107240.6 dβ+IM
423 102Rh 45571.788×107207 dβ+(78), β(22)
424 195Au 791168.2383531.607×107186.01 dβ+
425 184mRe 751098.3106701.531×107177.25 dIT (75), β+(25)
426 194m2Ir 771178.2380251.477×107171 dβ
427 121mTe 52698.8007491.423×107164.7 dIT (89), β+(11)
428 242Cm 961467.8448601.407×107162.8 dα, SF
429 45Ca 20258.9782611.405×107162.61 dβ
430 177m3Lu 711068.3618291.386×107160.4 dβ(77), IT (23)
431 159Dy 66938.5063781.248×107144.4 dβ+
432 174mLu 711031.227×107142 dIT (99), ε (0.6)
433 210Po 841268.1472951.196×107138.4 dαDP
434 139Ce 58818.6968811.189×107137.64 dβ+
435 123Sn 50738.7853111.116×107129.2 dβFP
436 170Tm 691018.4230961.111×107128.6 dβ, β+(0.13)
437 151Gd 64878.5626851.070×107123.9 dβ+, α
438 181W 741078.3379241.045×107120.96 dβ+
439 75Se 34419.0335811.035×107119.8 dβ+IM
440 123mTe 52711.030×107119.2 dIT
441 113Sn 50638.8530359.943×106115.08 dβ+
442 182Ta 731098.3264569.914×106114.7 dβ
443 88Y 39499.0292729.213×106106.63 dβ+
444 127mTe 52758.7657599.167×106106.1 dIT (98), β(2.1)FP
445 257Fm 1001577.7266198.683×106100.5 dα, SF (0.2)
446 168Tm 69998.4363168.044×10693.1 dβ+, β
447 149Eu 63868.5843958.044×10693.1 dβ+
448 185Os 761098.3027308.031×10692.95 dβ+
449 97mTc 43547.871×10691.1 dIT (96), ε (3.9)
450 35S 16198.8955107.549×10687.37 dβCG
451 83Rb 37469.0240387.448×10686.2 dβ+
452 46Sc 21258.9790917.237×10683.76 dβIM
453 88Zr 40489.0215897.206×10683.4 dβ+
454 73As 33409.0433416.938×10680.3 dβ+
455 56Co 27299.0720316.673×10677.24 dβ+
456 185W 741118.3058666.489×10675.1 dβ
457 192Ir 771156.378×10673.82 dβ(95), ε (4.8)IM
458 160Tb 65958.4953466.247×10672.3 dβ
459 58Co 27319.1031536.121×10670.84 dβ+
460 183Re 751088.3216616.048×10670 dβ+
461 175Hf 721038.3826656.039×10669.90 d [37] β+
462 188W 741148.2770036.028×10669.77 dβ
463 85Sr 38479.0254805.603×10664.85 dβ+
464 95Zr 40558.9729895.532×10664.03 dβFP
465 95mTc 43528.9763595.363×10662.0 dβ+(96), IT (3.9)
466 91mNb 41505.258×10660.86 dIT (97), ε (3.4)
467 254Cf 981567.7510875.227×10660.5 dSF, α (0.3)
468 124Sb 51738.7779435.194×10660.12 dβ
469 125I 53728.7820195.131×10659.39 dβ+IM
470 91Y 39529.0201745.055×10658.51 dβFP
471 125mTe 52734.959×10657.4 dITFP
472 148Eu 63858.5868824.709×10654.5 dβ+, α
473 7Be 435.8184704.598×10653.22 dβ+CG
474 258Md 1011577.7159484.457×10651.6 dα, SF
475 89Sr 38519.0399694.369×10650.56 dβFP, IM
476 114mIn 49658.8466084.278×10649.51 dIT (97), β+(3.2)
477 146Gd 64828.5925124.171×10648.27 dβ+
478 203Hg 801238.1958064.027×10646.61 dβ
479 237Pu 941437.8810603.943×10645.64 dβ+, α
480 115mCd 48678.8357543.850×10644.6 dβFP
481 59Fe 26339.0995163.845×10644.50 dβIM
482 181Hf 721098.3332723.662×10642.39 dβ
483 105Ag 47588.9005473.567×10641.29 dβ+
484 148mPm 61878.5898003.567×10641.29 dβ(96), IT (4.2)
485 255Es 991567.7415673.439×10639.8 dβ(92), α (8.0), SF
486 103Ru 44598.9185003.391×10639.245 dβFP
487 127Xe 54738.7667683.140×10636.342 dβ+
488 184Re 751093.059×10635.4 dβ+
489 37Ar 18198.9077523.025×10635.01 dβ+CG
490 95Nb 41548.9848213.023×10634.99 dβFP
491 129mTe 52778.7449532.903×10633.6 dIT (64), β(36)FP
492 84Rb 37479.0207322.836×10632.82 dβ+(96), β(3.9)
493 241Cm 961457.8484922.834×10632.8 dβ+(99), α (1.0)
494 141Ce 58838.6772862.808×10632.51 dβFP
495 169Yb 70998.4285462.766×10632.014 dβ+IM
496 240Cm 961447.8558052.627×10630 dα, SF
497 260Md 1011597.6997892.402×10627.8 dSF
498 51Cr 24279.0801272.393×10627.702 dβ+IM
499 233Pa 911427.9104262.331×10626.98 dβDP
500 33P 15188.8694342.190×10625.35 dβ
501 82Sr 38448.9982542.190×10625.35 dβ+IM
502 179m2Hf 721072.160×10625.0 dIT
503 234Th 901447.8977632.083×10624.11 dβDP
504 147Eu 63848.5988792.082×10624.1 dβ+, α
505 178W 741048.3545631.866×10621.6 dβ+
506 253Es 991547.7590191.769×10620.47 dα, SF
507 230U 921387.9338711.748×10620.23 dα
508 121Te 52691.668×10619.31 dε
509 227Th 901377.9576441.615×10618.693 dαDP, IM
510 86Rb 37499.0335021.611×10618.645 dβ, β+
511 253Cf 981557.7578851.539×10617.81 dβ, α (0.3)
512 74As 33419.0288951.535×10617.8 dβ+(66), β(34)
513 230Pa 911397.9314361.503×10617.4 dβ+(92), β(7.8), α
514 103Pd 46578.9206381.468×10616.99 dβ+IM
515 99Rh 45548.9357111.391×10616.1 dβ+
516 48V 23258.9978901.380×10615.97 dβ+
517 156Eu 63938.5206421.312×10615.19 dβFP
518 191Os 761158.2618701.295×10614.99 dβ
519 205Bi 831228.1740691.288×10614.91 dβ+
520 225Ra 881377.9735761.280×10614.82 dβ, α [38] DP
521 32P 15178.8308651.233×10614.269 dβCG, IM
522 117mSn 50671.204×10613.94 dITFP
523 143Pr 59848.6522581.172×10613.57 dβFP
524 189Ir 771128.2747831.140×10613.2 dβ+
525 136Cs 55818.7061711.124×10613.01 dβ
526 126I 53738.7690261.117×10612.93 dβ+(53), β(47)
527 140Ba 56848.6661201.102×10612.753 dβFP
528 126Sb 51758.7570421.067×10612.35 dβFP
529 202Tl 811218.1999561.064×10612.31 dβ+
530 131mXe 54771.032×10611.948 dITFP
531 190Ir 771138.2647551.015×10611.751 dβ+
532 131Ba 56758.7330379.953×10511.52 dβ+
533 71Ge 32399.0559439.908×10511.468 dβ+
534 223Ra 881357.9940429.880×10511.435 dαDP, IM
535 147Nd 60878.6029739.487×10510.98 dβFP
536 246Pu 941527.8054949.366×10510.84 dβ
537 193mIr 771169.098×10510.53 dIT
538 188Pt 781108.2725148.778×10510.2 dβ+, α
539 92mNb 41518.740×10510.12 dβ+
540 225Ac 891367.9751598.570×1059.919 dαDP, IM
541 131Cs 55768.7435418.371×1059.69 dβ+IM
542 125Sn 50758.7585158.324×1059.63 dβFP
543 169Er 681018.4318528.115×1059.39 dβIM
544 149Gd 64858.5755768.018×1059.28 dβ+, α
545 167Tm 69988.4458667.992×1059.25 dβ+
546 129mXe 54757.672×1058.88 dIT
547 206Po 841228.1595907.603×1058.8 dβ+(95), α (5.4)
548 72Se 34389.0143007.258×1058.40 dβ+
549 106mAg 47598.8906397.154×1058.28 dβ+
550 171Lu 711008.4095327.125×1058.25 dβ+
551 131I 53788.7388426.934×1058.025 dβFP, IM
552 257Es 991587.7234686.653×1057.7 dβ, SF
553 111Ag 47648.8661116.422×1057.43 dβFP
554 161Tb 65968.4903836.003×1056.948 dβFP
555 237U 921457.8798005.834×1056.752 dβDP
556 172Lu 711018.4012175.789×1056.70 dβ+
557 177Lu 711065.741×1056.644 dβIM
558 132Cs 55778.7315995.599×1056.48 dβ+(98), β(1.6)
559 206Bi 831238.1685515.394×1056.24 dβ+
560 196Au 791178.2302055.327×1056.17 dβ+(93), β(7)
561 56Ni 28289.0338995.249×1056.08 dβ+
562 118Te 52668.8147265.184×1056.00 dβ+
563 145Eu 63828.6092455.124×1055.93 dβ+
564 120mSb 51698.8081944.977×1055.76 dβ+
565 52Mn 25279.0464314.831×1055.59 dβ+
566 148Pm 61874.638×1055.37 dβ
567 156Tb 65918.5206674.622×1055.35 dβ+
568 133Xe 54798.7303024.534×1055.25 dβFP, IM
569 155Tb 65908.5310314.523×1055.23 d [39] β+
570 183Ta 731108.3188474.406×1055.1 dβ
571 210Bi 831274.330×1055.01 dβ, αDP
572 245Bk 971487.8190204.277×1054.95 dβ+, α (0.12)
573 119mTe 52678.8017734.061×1054.70 dβ+
574 146Eu 63838.5995603.983×1054.61 dβ+
575 47Ca 20278.9721813.919×1054.54 dβ
576 234Np 931417.9005713.802×1054.4 dβ+
577 101mRh 45563.752×1054.34 dε (93), IT (7.2)
578 193mPt 781153.741×1054.33 dIT
579 96Tc 43538.9652553.698×1054.28 dβ+
580 231U 921397.9249773.629×1054.2 dβ+, α
581 175Yb 701058.3839023.616×1054.19 dβ
582 124I 53718.7758843.608×1054.18 dβ+IM
583 195mPt 781173.465×1054.01 dIT
584 127Sb 51768.7540053.326×1053.85 dβFP
585 222Rn 861367.9975733.302×1053.82 dαDP
586 186Re 751113.213×1053.72 dβ(93), ε (7.5)IM
587 224Ra 881367.9872773.138×1053.63 dαDP
588 100Pd 46548.9235873.136×1053.63 dβ+
589 95mNb 41543.119×1053.61 dIT (94), β(5.6)FP
590 166Dy 661008.4483762.938×1053.40 dβ
591 140Nd 60808.6731132.912×1053.37 dβ+
592 47Sc 21269.0145642.894×1053.35 dβIM
593 87Y 39489.0255652.873×1053.33 dβ+
594 89Zr 40499.0249122.821×1053.27 dβ+
595 67Ga 31369.0695322.818×1053.26 dβ+IM
596 132Te 52808.7166462.768×1053.20 dβFP
597 134Ce 58768.7044322.730×1053.16 dβ+
598 199Au 791208.2175342.712×1053.14 dβ
599 201Tl 811208.2065612.628×1053.04 dβ+IM
600 253Fm 1001537.7576912.592×1053.0 dβ+(88), α (12)
601 97Ru 44538.9590802.451×1052.84 dβ+
602 191Pt 781138.2582282.445×1052.83 dβ+
603 111In 49628.8676882.423×1052.80 dβ+IM
604 99Mo 42578.9396692.374×1052.75 dβFP, IM
605 122Sb 51718.7953462.353×1052.72 dβ(98), β+(2.4)
606 71As 33389.0275812.350×1052.72 dβ+
607 197Hg 801178.2263582.337×1052.71 dβ+
608 198Au 791198.2207322.328×1052.69 dβIM
609 182Re 751078.3210532.311×1052.68 dβ+
610 90Y 39519.0322942.306×1052.67 dβFP, IM
611 172Tm 691038.4049322.290×1052.65 dβ
612 67Cu 29389.0760862.226×1052.58 dβIM
613 44m3Sc 21238.9246272.110×1052.44 dIT, β+
614 128Ba 56728.7385232.100×1052.43 dβ+
615 77Br 35429.0224312.053×1052.38 dβ+
616 166Yb 70968.4423402.041×1052.36 dβ+
617 239Np 931467.8649992.036×1052.36 dβDP
618 177Ta 731048.3635532.029×1052.35 dβ+
619 153Tb 65888.5374712.022×1052.34 dβ+
620 66Ni 28389.0714231.966×1052.28 dβ
621 247Pu 941537.7919751.961×1052.27 dβ
622 198m2Au 791191.963×1052.27 dIT
623 115Cd 48671.925×1052.23 dβFP
624 149Pm 61888.5818711.911×1052.21 dβFP
625 133mXe 54791.899×1052.20 dITFP
626 203Pb 821218.1934311.869×1052.16 dβ+
627 240Am 951457.8566941.829×1052.12 dβ+, α
628 238Np 931457.8719311.814×1052.10 dβ
629 172Er 681048.3997521.775×1052.05 dβ
630 170Lu 71998.4084451.738×1052.01 dβ+
631 72Zn 30429.0175911.674×1051.94 dβ
632 153Sm 62918.5456141.666×1051.93 dβFP, IM
633 202Pt 781248.1832091.584×1051.83 dβ
634 48Sc 21278.9983271.572×1051.82 dβ
635 246Bk 971497.8112871.555×1051.80 dβ+
636 195mHg 801158.2293991.498×1051.73 dIT (54), β+(46)
637 188Ir 771118.2752001.494×1051.73 dβ+
638 140La 57838.6736201.450×1051.68 dβFP, IM
639 254mEs 991551.415×1051.64 dβ, α (0.3), ε (0.08)
640 69Ge 32379.0438001.406×1051.63 dβ+
641 133mBa 56771.400×1051.62 dIT, ε
642 77As 33449.0312831.398×1051.62 dβFP
643 119Sb 51688.8232351.375×1051.59 dβ+
644 147Gd 64838.5840011.370×1051.59 dβ+
645 194Au 791158.2376261.369×1051.58 dβ+
646 229Pa 911387.9407691.339×1051.55 dβ+, α (0.5)
647 246Cf 981487.8107921.285×1051.49 dα, SF
648 57Ni 28299.0552221.282×1051.48 dβ+
649 105Rh 45608.9079561.272×1051.47 dβFP
650 82Br 35479.0164071.270×1051.47 dβ
651 79Kr 36439.0136441.261×1051.46 dβ+
652 137mCe 58798.6963271.238×1051.43 dIT (99), β+(0.8)
653 169Lu 71988.4149781.226×1051.42 dβ+
654 143Ce 58858.6420411.189×1051.38 dβFP
655 251Es 991527.7744671.188×1051.38 dβ+, α (0.5)
656 131mTe 52798.7203921.169×1051.35 dβ(74), IT (26)FP
657 83Sr 38458.9965681.167×1051.35 dβ+
658 129Cs 55748.7496221.154×1051.34 dβ+
659 232Pa 911417.9163791.140×1051.32 dβ
660 165Tm 69968.4527581.082×1051.25 dβ+
661 193Os 761178.2443481.074×1051.24 dβ
662 226Ac 891377.9637611.057×1051.22 dβ(83), β+(17), α
663 160Er 68928.4841901.029×1051.19 dβ+
664 151Pm 61908.5573871.022×1051.18 dβFP
665 135mBa 56791.012×1051.17 dIT
666 121Sn 50719.731×1041.13 dβFP
667 166Ho 67999.652×1041.12 dβIM
668 76As 33439.0225059.454×1041.09 dβ
669 200Tl 811198.2065679.396×1041.09 dβ+
670 72As 33399.0189669.360×1041.08 dβ+
671 231Th 901417.9249329.187×1041.06 dβDP
672 252Fm 1001527.7664989.140×1041.06 dα, SF
673 156m2Tb 65918.78×1041.02 dIT
674 189Re 751148.2722698.748×1041.01 dβ

    Radionuclides with half-lives of 1 hour to 1 day

    Ordered by half-life.

    No.NuclideZNEnergyHalf-life
    (seconds)
    Half-life
    (hours)
    Decay modeNotes
    675 197mHg 801178.575×10423.8IT
    676 187W 741138.2847228.571×10423.8β
    677 248mBk 971518.532×10423.7β(70), ε (30)
    678 173Hf 721018.3916178.496×10423.6β+
    679 96Nb 41558.9630368.406×10423.4β
    680 154m2Tb 65898.5269128.17×10422.7β+
    681 236mNp 931438.1×10422.5ε (50), β(50)
    682 43K 19248.9223278.028×10422.3β
    683 228Pa 911377.9444687.92×10422β+(98), α (2)
    684 182Os 761068.3164327.862×10421.8β+
    685 48Cr 24248.9633907.762×10421.6β+
    686 154m1Tb 65897.74×10421.5β+
    687 200Pb 821188.2025427.740×10421.5β+
    688 112Pd 46668.8421857.574×10421.0βFP
    689 28Mg 12168.6077067.529×10420.9βCG
    690 133I 53808.7170947.499×10420.8βFP
    691 100Rh 45558.9271677.488×10420.8β+
    692 122Xe 54688.7709597.236×10420.1β+
    693 255Fm 1001557.7427047.225×10420.1α, SF
    694 181Re 751068.3282947.164×10419.9β+
    695 197Pt 781198.2257567.161×10419.9β
    696 194Ir 771176.966×10419.4β
    697 95Tc 43526.933×10419.3β+
    698 142Pr 59838.6614176.883×10419.1β, ε
    699 135La 57788.7131796.808×10418.9β+
    700 200mAu 791218.2028776.732×10418.7β(84), IT (16)
    701 159Gd 64958.5025766.652×10418.5βFP
    702 152Tb 65878.5365916.436×10417.9 [40] β+
    703 135Ce 58778.6981796.372×10417.7β+
    704 193Au 791148.2443536.354×10417.7β+
    705 151Tb 65868.5456926.339×10417.6β+, α
    706 55Co 27289.0536476.311×10417.5β+
    707 188Re 751138.2788606.122×10417.0βIM
    708 125Xe 54718.7688646.073×10416.9β+
    709 97Zr 40578.9264516.030×10416.7βFP
    710 186Ir 771098.2819355.990×10416.6β+
    711 86Zr 40468.9759795.940×10416.5β+
    712 76Br 35418.9961835.832×10416.2β+
    713 119Te 52675.778×10416.1β+
    714 242Am 951475.767×10416.0β(83), ε (17)
    715 170Hf 72988.4022105.764×10416.0β+
    716 268Db 1051637.6351335.76×10416 [n 1] α (51), SF (49) [41]
    717 157Eu 63948.5137925.465×10415.2βFP
    718 24Na 11138.4220825.384×10415.0βCG, IM
    719 76Kr 36408.9794065.328×10414.8β+
    720 86Y 39478.9932345.306×10414.7β+
    721 211Rn 861258.1128255.256×10414.6β+(73), α (27)
    722 90Nb 41498.9897275.256×10414.6β+
    723 185Ir 771088.2893825.184×10414.4β+
    724 182mRe 751075.090×10414.1β+
    725 240U 921487.8516825.076×10414.1β
    726 72Ga 31419.0239585.049×10414.0β
    727 69mZn 30399.0565364.949×10413.7IT, β
    728 109Pd 46638.8750614.892×10413.6βFP
    729 87mY 39484.813×10413.4IT (98), β+(1.6)
    730 123I 53708.7863114.760×10413.2β+IM
    731 191mOs 761154.716×10413.1IT
    732 183Os 761078.3099074.680×10413.0β+
    733 150mEu 63874.608×10412.8β(89), β+(11)
    734 64Cu 29359.0935814.572×10412.7β+(62), β(38)IM
    735 200Pt 781228.2043424.536×10412.6β
    736 130I 53778.7400354.450×10412.4β
    737 42K 19238.9051754.448×10412.4βIM
    738 171Hf 72998.3954804.356×10412.1β+
    739 239Am 951447.8646664.284×10411.9β+, α
    740 193mHg 801138.2314834.248×10411.8β+(93), IT (7.2)
    741 203Bi 831208.1774364.234×10411.8β+
    742 204Bi 831218.1726514.039×10411.2β+
    743 77Ge 32458.9961854.036×10411.2βFP
    744 266Lr 1031633.96×10411 [n 1] SF
    745 189Pt 781118.2643593.913×10410.9β+
    746 195Hg 801153.848×10410.7β+
    747 212Pb 821308.1069283.826×10410.6βDP, IM
    748 175Ta 731028.3708133.78×10410.5β+
    749 187Ir 771108.2837133.78×10410.5β+
    750 245Pu 941517.8137523.78×10410.5β
    751 165Er 68978.4624063.730×10410.4β+
    752 93Y 39548.9769513.665×10410.2βFP
    753 244Am 951497.8259143.604×10410.0β
    754 154Tb 65893.598×1049.99β+
    755 155Dy 66898.5175213.564×1049.9β+
    756 183mOs 761073.564×1049.9β+(85), IT(15)
    757 91Sr 38538.9905033.474×1049.65βFP
    758 196m2Au 791173.457×1049.60IT
    759 156Sm 62948.5160073.384×1049.4βFP
    760 127Te 52753.366×1049.35βFP
    761 201Pb 821198.1969893.359×1049.33β+
    762 152mEu 63893.352×1049.31β-(73), β+(27)
    763 66Ga 31359.0368433.349×1049.30β+
    764 62Zn 30329.0579573.309×1049.19β+
    765 135Xe 54818.7114533.290×1049.14βFP
    766 128Sb 51778.7323433.244×1049.01βFP
    767 137Ce 58793.24×1049.0β+
    768 58mCo 27313.187×1048.85IT, β+
    769 234Pu 941407.8988923.168×1048.8β+(94), α (6)
    770 184Ta 731118.3041543.132×1048.7β
    771 250Es 991517.7784073.096×1048.6β+
    772 101Pd 46558.9171493.049×1048.47β+
    773 52Fe 26269.0007892.979×1048.28β+
    774 173Tm 691048.3965242.966×1048.24β
    775 180Ta 731072.935×1048.15ε (85), β(15)
    776 157Dy 66918.5135442.930×1048.14β+
    777 210At 851258.1283372.916×1048.1β+, α (0.2)
    778 176Ta 731038.3632022.912×1048.09β+
    779 166Tm 69978.4441832.772×1047.70β+
    780 256Es 991577.7307422.736×1047.6β
    781 171Er 681038.4089012.706×1047.52β
    782 199Tl 811188.2123332.671×1047.42β+
    783 211At 851268.1265272.597×1047.21β+(58), α (42)IM
    784 73Se 34399.0058212.574×1047.15β+
    785 93mMo 42512.466×1046.85IT, β+(0.1)
    786 234Pa 911437.8989302.412×1046.70βDP
    787 135I 53828.6919942.369×1046.58βFP
    788 107Cd 48598.8842712.340×1046.50β+
    789 82mRb 37458.9996082.330×1046.47β+
    790 153Dy 66878.5232882.304×1046.4β+, α
    791 127Cs 55728.7503832.250×1046.25β+
    792 228Ac 891397.9445912.214×1046.15βDP
    793 99mTc 43562.162×1046.01IT, βFP, IM
    794 145Pr 59868.6205142.154×1045.98βFP
    795 189mOs 761132.092×1045.81IT
    796 207Po 841238.1541582.088×1045.80β+, α
    797 111mPd 46658.8445892.003×1045.56IT (77), β(23)
    798 90Mo 42488.9620722.002×1045.56β+
    799 180mHf 721081.991×1045.53IT, β(0.3)
    800 257Md 1011567.7250401.987×1045.52ε (85), α (15)
    801 139mNd 60798.6595291.980×1045.50β+(87), IT (13)
    802 209At 851248.1329541.948×1045.41β+(96), α (4.0)
    803 113Ag 47668.8415311.933×1045.37β
    804 156m1Tb 65911.908×1045.3IT
    805 198Tl 811178.2101661.908×1045.3β+
    806 251Fm 1001517.7685901.908×1045.30β+(98), α (1.8)
    807 133mCe 58758.6907711.836×1045.1β+
    808 138Nd 60788.6656611.814×1045.04β+
    809 160mHo 67938.4858771.807×1045.02IT (73), β+(27)
    810 244Bk 971477.8224911.807×1045.02β+, α
    811 118m2Sb 51678.8149631.800×1045.00β+
    812 243Pu 941497.8336481.784×1044.96β
    813 192Au 791138.2420361.778×1044.94β+
    814 110In 49618.8574641.771×1044.92β+
    815 94Tc 43518.9665831.758×1044.88β+
    816 85mY 39468.9868801.750×1044.86β+
    817 73Ga 31429.0261121.750×1044.86β
    818 192Hg 801128.2380511.746×1044.85β+
    819 99mRh 45541.69×1044.7β+
    820 243Bk 971467.8298011.66×1044.6β+, α (0.15)
    821 264Lr 1031611.66×1044.6 [n 1] SF [41]
    822 132La 57758.7057211.652×1044.59β+
    823 179Lu 711088.3454281.652×1044.59β
    824 81Rb 37449.0028711.646×1044.57β+IM
    825 115mIn 49661.615×1044.49IT (95), β(5.0)FP
    826 85mKr 36491.613×1044.48β(79), IT (21)FP
    827 105Ru 44618.8896891.598×1044.44βFP
    828 80mBr 35459.0188721.591×1044.42IT
    829 139Pr 59808.6815651.588×1044.41β+
    830 129Sb 51788.7273581.584×1044.40βFP
    831 109In 49608.8648051.497×1044.16β+
    832 110Sn 50608.8517271.495×1044.15β+
    833 71mZn 30419.0173701.493×1044.15β
    834 184Hf 721128.2968711.483×1044.12β
    835 149Tb 65848.5511661.482×1044.12β+(83), α (17)
    836 44Sc 21231.455×1044.04β+
    837 262Lr 1031597.6815561.44×1044β+, SF
    838 141La 57848.6595401.411×1043.92βFP
    839 133La 57768.7141091.408×1043.91β+
    840 43Sc 21228.9129071.401×1043.89β+
    841 193Hg 801131.368×1043.80β+
    842 195mIr 771188.2333261.346×1043.74β
    843 176mLu 711051.319×1043.66β, ε (0.1)
    844 202mPb 821201.274×1043.54IT (90), β+(9.5)
    845 92Y 39538.9932081.274×1043.54βFP
    846 204Po 841208.1612001.267×1043.52β+(99), α (0.7)
    847 132Ce 58748.6961311.264×1043.51β+
    848 150Tb 65858.5453941.253×1043.48β+
    849 117mCd 48698.8088401.239×1043.44βFP
    850 61Cu 29329.0874521.203×1043.34β+
    851 254Fm 1001547.7528081.166×1043.24α, SF (0.06)
    852 209Pb 821278.1556071.165×1043.24βDP
    853 90mY 39511.161×1043.23IT, β
    854 250Bk 971537.7795231.156×1043.21β
    855 161Er 68938.4763521.156×1043.21β+
    856 191Au 791128.2483431.145×1043.18β+
    857 173Ta 731008.3742181.130×1043.14β+
    858 112Ag 47658.8447561.127×1043.13β
    859 247Cf 981497.8035661.120×1043.11β+, α
    860 167Ho 671008.4443041.116×1043.1β
    861 190mRe 751158.2574331.116×1043.1β(54), IT (46)
    862 184Ir 771078.2865991.112×1043.09β+
    863 190m3Ir 771131.111×1043.09β+(91), IT (8.6)
    864 45Ti 22238.9381211.109×1043.08β+
    865 134mCs 55791.048×1042.91IT, ε (0.3)
    866 197Tl 811168.2151901.022×1042.84β+
    867 38S 16228.7781961.022×1042.84β
    868 88Kr 36528.9769181.017×1042.83βFP
    869 87mSr 38491.010×1042.81IT, ε (0.3)
    870 117Sb 51668.8289771.008×1042.80β+
    871 224Ac 891357.9809931.001×1042.78β+(91), α (9.1)
    872 93Tc 43508.9702749.90×1032.75β+
    873 150Pm 61898.5620149.713×1032.70β
    874 85Y 39469.648×1032.68β+
    875 31Si 14178.8116189.430×1032.62βCG
    876 256Fm 1001567.7373989.426×1032.62SF (92), α (8.1)
    877 92Sr 38548.9720679.400×1032.61βFP
    878 56Mn 25319.0875729.284×1032.58β
    879 65Ni 28379.0732679.063×1032.52β
    880 117Cd 48699.011×1032.50βFP
    881 176W 741028.3590559.00×1032.5β+
    882 239Cm 961437.8571439.00×1032.5β+, α
    883 116Te 52648.8064148.964×1032.49β+
    884 141Nd 60818.6684768.964×1032.49β+
    885 161Ho 67948.4887378.928×1032.48β+
    886 210Rn 861248.1170328.640×1032.40α (96), β+(4)
    887 198Pb 821168.2028938.640×1032.4β+
    888 152Dy 66868.5326708.568×1032.38β+, α (0.1)IM
    889 83Br 35489.0232438.546×1032.37βFP
    890 178Ta 731058.3550758.496×1032.36β+
    891 187Pt 781098.2676388.460×1032.35β+
    892 165Dy 66998.4568918.395×1032.33βIM
    893 132I 53798.7205708.262×1032.30βFP
    894 158Er 68908.4846198.24×1032.29β+
    895 195Ir 771188.24×1032.29β
    896 66Ge 32349.0049648.136×1032.26β+
    897 129Ba 56738.7307468.028×1032.23β+
    898 250mEs 991517.99×1032.22β+
    899 177W 741038.3521187.94×1032.21β+
    900 238Cm 961427.8637647.92×1032.2β+(96), α (3.8), SF
    901 106mRh 45618.8847617.86×1032.18β
    902 129mBa 56737.686×1032.14β+
    903 138mPr 59798.6710887.632×1032.12β+
    904 121I 53688.7844437.632×1032.12β+
    905 127Sn 50778.7288007.560×1032.10βFP
    906 123Xe 54698.7644097.488×1032.08β+
    907 186Pt 781088.2748977.488×1032.08β+, α
    908 245Am 951507.8186747.380×1032.05β
    909 89Nb 41488.9775077.308×1032.03β+
    910 117mIn 49688.8288496.972×1031.94β(53), IT (47)FP
    911 186mIr 771096.912×1031.92β+(~75), IT (~25)
    912 177Yb 701078.3594016.880×1031.91β
    913 198mTl 811176.732×1031.87β+(56), IT (44)
    914 196Tl 811158.2116186.624×1031.84β+
    915 83m2Kr 36476.588×1031.83ITFP
    916 18F 998.0227896.584×1031.83β+CG, IM
    917 41Ar 18238.8778526.577×1031.83βCG
    918 163Tm 69948.4562056.516×1031.81β+
    919 207At 851228.1353036.516×1031.81β+(91), α (8.6)
    920 239Pa 911487.8481486.48×1031.8β
    921 224Rn 861387.9713276.420×1031.78β
    922 80Sr 38428.9501776.378×1031.77β+
    923 181Os 761058.3119356.30×1031.75β+
    924 205Po 841218.1567376.264×1031.74β+, α
    925 149Nd 60898.5705296.221×1031.73βFP
    926 202Bi 831198.1739666.19×1031.72β+
    927 201Bi 831188.1778756.18×1031.72β+
    928 249Es 991507.7854646.132×1031.70β+(99), α (0.6)
    929 87Zr 40478.9833736.048×1031.68β+
    930 126Ba 56708.7274396.00×1031.67β+
    931 113mIn 49645.968×1031.66IT
    932 61Co 27349.1024495.936×1031.65β
    933 147Tb 65828.5526345.90×1031.64β+
    934 238Am 951437.8678825.880×1031.63β+, α
    935 208At 851238.1313765.868×1031.63β+(99), α (0.6)
    936 133Ce 58755.82×1031.62β+
    937 75Br 35408.9931815.80×1031.61β+
    938 95Ru 44518.9497495.785×1031.61β+
    939 259Md 1011587.7098605.76×1031.60SF
    940 152m5Eu 63895.748×1031.60IT
    941 197mPt 781195.725×1031.59IT (97), β(3.3)
    942 230Ra 881427.9212495.580×1031.55β
    943 142La 57858.6349545.466×1031.52βFP
    944 78As 33459.0048795.442×1031.51βFP
    945 199Pb 821178.1981115.40×1031.5β+
    946 78Ge 32468.9926355.28×1031.47βFP
    947 255Cf 981577.7387395.10×1031.42β
    948 196mTl 811155.076×1031.41β+(96), IT (3.8)
    949 196mIr 771198.2194405.040×1031.40β
    950 267Db 1051627.6443615.04×1031.4 [n 1] SF
    951 132mI 53794.993×1031.39IT (86), β(14)FP
    952 139Ba 56838.6822174.976×1031.38βFP
    953 75Ge 32439.0294134.967×1031.38β
    954 120I 53678.7695774.900×1031.36β+
    955 256Md 1011557.7290624.662×1031.30β+(91), α (9.2)
    956 137Pr 59788.6784594.608×1031.28β+
    957 87Kr 36518.9990224.578×1031.27βFP
    958 164Yb 70948.4434194.548×1031.26β+
    959 163Er 68958.4711684.500×1031.25β+
    960 178Yb 701088.3505304.440×1031.23β
    961 237Am 951427.8748304.416×1031.23β+, α
    962 77Kr 36418.9826184.368×1031.21β+
    963 142Sm 62808.6276164.349×1031.21β+
    964 97Nb 41568.9538644.326×1031.20βFP
    965 185Pt 781078.2695984.254×1031.18β+
    966 195Tl 811148.2157124.176×1031.16β+
    967 129Te 52774.176×1031.16βFP
    968 104Ag 47578.8897024.152×1031.15β+
    969 110mIn 49614.146×1031.15β+
    970 174Ta 731018.3686844.104×1031.14β+
    971 68Ga 31379.0578884.071×1031.13β+IM
    972 85mSr 38474.058×1031.13IT (87), β+(13)
    973 190mIr 771134.032×1031.12IT
    974 162mHo 67958.4783714.020×1031.12IT (62), β+(38)
    975 204m2Pb 821224.016×1031.12IT
    976 89mNb 41483.96×1031.10β+
    977 103Ag 47568.8945413.942×1031.10β+
    978 249Cm 961537.7871913.849×1031.07β
    979 229Ac 891407.9370483.762×1031.05β
    980 117Te 52658.7986523.720×1031.03β+
    981 240Np 931477.8533483.714×1031.03β
    982 182mHf 721103.69×1031.03β(54), IT (46)
    983 183Hf 721118.3078853.665×1031.02β
    984 212Bi 831298.1096173.633×1031.01β(64), α (36)DP
    985 116m2Sb 51658.8164833.618×1031.01β+
    986 148Tb 65838.5479493.60×1031.00β+
    987 270Db 1051653.6×1031.0 [n 1] α (~87), SF (~13)
    1. 1 2 3 4 5 These superheavy isotopes have large statistical uncertainties in their half-lives because only a small number of atoms have been counted one at a time. They are given in their originally reported form with two significant figures, but would not deserve it by the standards applied to other isotopes. The actual uncertainty can be found through the isotope link.

    Radionuclides with half-lives less than 1 hour

    The following is incomplete and out of date, but is the only such list we have.

    See also

    Sources

    List was begun from reference [42] and most more recent updates are reflected in reference. [43] These sources do not indicate whether some heavy isotopes were produced and observed, or only predicted from estimated data. None of the latter should appear here.

    Notes

    1. Two further nuclides, plutonium-244 and samarium-146, have half-lives just long enough (8.13×107 and 9.20×107 years [2] ) that they could have survived from the formation of the Solar System and be present on Earth in trace quantities (having survived 56 and 50 half-lives). They might therefore be considered primordial, but fall short of the detection threshold in studies so far.[ citation needed ]
    2. Two isotopes marked as such, 134Cs and 154Eu, are not directly produced by fission but arise in nuclear reactors by neutron capture on isotopes that are. They are included as they are mentioned elsewhere on Wikipedia as being produced by fission.
    3. 1 2 3 4 5 6 Note that NUBASE2020 uses the tropical year to convert between years and other units of time, not the Gregorian year. The relationship between years and other time units in NUBASE2020 is as follows: 1 y = 365.2422 d = 31 556 926 s

    References

    1. Thoennessen, M. (2 April 2019). "Discovery of Nuclides Project" . Retrieved 26 April 2019.
    2. 1 2 Chiera, Nadine M.; Sprung, Peter; Amelin, Yuri; Dressler, Rugard; Schumann, Dorothea; Talip, Zeynep (1 August 2024). "The 146Sm half-life re-measured: consolidating the chronometer for events in the early Solar System". Scientific Reports. 14 (1): 17436. doi: 10.1038/s41598-024-64104-6 . PMC   11294585 . PMID   39090187.
    3. Merrill, Paul W. (September 1954). "17. Technetium in S-type stars". Transactions of the International Astronomical Union. 8: 832–833.
    4. Primarily sourced from and . (accessed 2025-07-18)
    5. Yan, X.; Cheng, Z.; Abdukerim, A.; et al. (2024). "Searching for two-neutrino and neutrinoless double beta decay of 134Xe with the PandaX-4T experiment". Physical Review Letters. 132 (152502): 152502. arXiv: 2312.15632 . Bibcode:2024PhRvL.132o2502Y. doi:10.1103/PhysRevLett.132.152502. PMID   38682998.
    6. Akerib, D S; et al. (2020-10-01). "Search for two neutrino double electron capture of 124Xe and 126Xe in the full exposure of the LUX detector". Journal of Physics G: Nuclear and Particle Physics. 47 (10): 105105. arXiv: 1912.02742 . Bibcode:2020JPhG...47j5105A. doi:10.1088/1361-6471/ab9c2d. ISSN   0954-3899.
    7. Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F. A.; d’Angelo, S.; Incicchitti, A.; Kovtun, G. P.; Kovtun, N. G.; Laubenstein, M.; Poda, D. V.; Polischuk, O. G.; Shcherban, A. P.; Solopikhin, D. A.; Suhonen, J.; Tretyak, V. I. (2013-03-06). "Search for 2 β decays of 96 Ru and 104 Ru by ultralow-background HPGe γ spectrometry at LNGS: Final results". Physical Review C. 87 (3): 034607. arXiv: 1302.7134 . doi:10.1103/PhysRevC.87.034607. ISSN   0556-2813.
    8. Bikit, I.; Krmar, M.; Slivka, J.; Vesković, M.; Čonkić, Lj.; Aničin, I. (1998-10-01). "New results on the double β decay of iron". Physical Review C. 58 (4): 2566–2567. Bibcode:1998PhRvC..58.2566B. doi:10.1103/PhysRevC.58.2566. ISSN   0556-2813.
    9. Beeman, J. W.; Bellini, F.; Cardani, L.; Casali, N.; Di Domizio, S.; Fiorini, E.; Gironi, L.; Nagorny, S. S.; Nisi, S.; Orio, F.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Tomei, C.; Vignati, M. (2013). "New experimental limits on the α decays of lead isotopes". The European Physical Journal A. 49 (4): 50. arXiv: 1212.2422 . Bibcode:2013EPJA...49...50B. doi:10.1140/epja/i2013-13050-7. ISSN   1434-6001.
    10. Barabash, A. S.; Hubert, Ph.; Marquet, Ch.; Nachab, A.; Konovalov, S. I.; Perrot, F.; Piquemal, F.; Umatov, V. (2011-04-21). "Improved limits on β+ EC and ECEC processes in 112Sn". Physical Review C. 83 (4): 045503. doi:10.1103/PhysRevC.83.045503. ISSN   0556-2813.
    11. Danevich, F. A.; Hult, M.; Junghans, A.; Kasperovych, D. V.; Kropivyansky, B. N.; Lutter, G.; Marissens, G.; Polischuk, O. G.; Romaniuk, M. V.; Stroh, H.; Tessalina, S.; Tretyak, V. I.; Ware, B. (2022). "New limits on double-beta decay of 190Pt and 198Pt". The European Physical Journal C. 82 (1). arXiv: 2201.06555 . doi:10.1140/epjc/s10052-022-09989-1. ISSN   1434-6044.
    12. Belli, P.; Bernabei, R.; Boiko, R. S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Di Marco, A.; Incicchitti, A.; Kropivyansky, B. N.; Laubenstein, M.; Nisi, S.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I. (2019). "First direct search for 2ϵ and ϵβ+ of 144Sm and 2β decay of 154Sm". The European Physical Journal A. 55 (11). arXiv: 1910.02262 . doi:10.1140/epja/i2019-12911-3. ISSN   1434-6001.
    13. 1 2 3 4 Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Kasperovych, D. V.; Kobychev, V. V.; Kovtun, G. P.; Kovtun, N. G.; Laubenstein, M.; Poda, D. V.; Polischuk, O. G.; Shcherban, A. P.; Tessalina, S.; Tretyak, V. I. (2020-08-05). "Search for α decay of naturally occurring osmium nuclides accompanied by γ quanta". Physical Review C. 102 (2): 024605. arXiv: 2009.01508 . Bibcode:2020PhRvC.102b4605B. doi:10.1103/PhysRevC.102.024605. ISSN   2469-9985.
    14. Belli, P; Bernabei, R; Cappella, F; Cerulli, R; Danevich, F A; d'Angelo, S; Incicchitti, A; Kobychev, V V; Poda, D V; Tretyak, V I (2011-11-01). "Final results of an experiment to search for 2β processes in zinc and tungsten with the help of radiopure ZnWO4 crystal scintillators". Journal of Physics G: Nuclear and Particle Physics. 38 (11): 115107. arXiv: 1110.3923 . Bibcode:2011JPhG...38k5107B. doi:10.1088/0954-3899/38/11/115107. ISSN   0954-3899.
    15. Lehnert, B; Wester, T; Degering, D; Sommer, D; Wagner, L; Zuber, K (2016-08-01). "Double electron capture searches in 74Se". Journal of Physics G: Nuclear and Particle Physics. 43 (8): 085201. arXiv: 1605.05976 . Bibcode:2016JPhG...43h5201L. doi:10.1088/0954-3899/43/8/085201. ISSN   0954-3899.
    16. 1 2 3 4 5 Broerman, B.; Laubenstein, M.; Nagorny, S.; Song, N.; Vincent, A.C. (2021). "A search for rare and induced nuclear decays in hafnium". Nuclear Physics A. 1012: 122212. arXiv: 2012.08339 . Bibcode:2021NuPhA101222212B. doi:10.1016/j.nuclphysa.2021.122212.
    17. 1 2 3 4 5 Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F.A.; dʼAngelo, S.; Di Vacri, M.L.; Incicchitti, A.; Laubenstein, M.; Nagorny, S.S.; Nisi, S.; Tolmachev, A.V.; Tretyak, V.I.; Yavetskiy, R.P. (2011). "First search for double β decay of dysprosium". Nuclear Physics A. 859 (1): 126–139. arXiv: 1103.5359 . Bibcode:2011NuPhA.859..126B. doi:10.1016/j.nuclphysa.2011.04.003.
    18. 1 2 Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kropivyansky, B.N.; Laubenstein, M.; Poda, D.V.; Polischuk, O.G.; Tretyak, V.I. (2014). "Search for double beta decay of 136Ce and 138Ce with HPGe gamma detector". Nuclear Physics A. 930: 195–208. arXiv: 1409.2734 . Bibcode:2014NuPhA.930..195B. doi:10.1016/j.nuclphysa.2014.08.072.
    19. Arnquist, I. J.; Avignone III, F. T.; Barabash, A. S.; Barton, C. J.; Bhimani, K. H.; Blalock, E.; Bos, B.; Busch, M.; Buuck, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Clark, M. L.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Henning, R.; Aguilar, D. Hervas; Hoppe, E. W.; Hostiuc, A.; Kim, I.; Kouzes, R. T.; Lannen V., T. E.; Li, A.; López-Castaño, J. M.; Massarczyk, R.; Meijer, S. J.; Meijer, W.; Oli, T. K.; Paudel, L. S.; Pettus, W.; Poon, A. W. P.; Radford, D. C.; Reine, A. L.; Rielage, K.; Rouyer, A.; Ruof, N. W.; Schaper, D. C.; Schleich, S. J.; Smith-Gandy, T. A.; Tedeschi, D.; Thompson, J. D.; Varner, R. L.; Vasilyev, S.; Watkins, S. L.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yu, C.-H. (13 October 2023). "Constraints on the Decay of 180mTa". Phys. Rev. Lett. 131 (15): 152501. arXiv: 2306.01965 . doi:10.1103/PhysRevLett.131.152501. PMID   37897780.
    20. Belli, P.; Bernabei, R.; Dai, C.J.; Grianti, F.; He, H.L.; Ignesti, G.; Incicchitti, A.; Kuang, H.H.; Ma, J.M.; Montecchia, F.; Ponkratenko, O.A.; Prosperi, D.; Tretyak, V.I.; Zdesenko, Yu.G. (1999). "New limits on spin-dependent coupled WIMPs and on 2β processes in 40Ca and 46Ca by using low radioactive CaF2(Eu) crystal scintillators". Nuclear Physics B. 563 (1–2): 97–106. Bibcode:1999NuPhB.563...97B. doi:10.1016/S0550-3213(99)00618-5.
    21. A. Alessandrello; et al. (January 2003). "New Limits on Naturally Occurring Electron Capture of 123Te". Physical Review C. 67 (1): 014323. arXiv: hep-ex/0211015 . Bibcode:2003PhRvC..67a4323A. doi:10.1103/PhysRevC.67.014323. S2CID   119523039.
    22. Aprile, E.; Abe, K.; Agostini, F.; et al. (26 August 2022). "Double-weak decays of Xe 124 and Xe 136 in the XENON1T and XENONnT experiments". Physical Review C. 106 (2). doi:10.1103/PhysRevC.106.024328.
    23. Meshik, A.P.; Hohenberg, C.M.; Pravdivtseva, O.V.; Kapusta, Y.S. (2001). "Weak decay of 130Ba and 132Ba: Geochemical measurements". Physical Review C. 64 (3): 035205–1–035205–6. Bibcode:2001PhRvC..64c5205M. doi:10.1103/PhysRevC.64.035205.
    24. M. Pujol; B. Marty; P. Burnard; P. Philippot (2009). "Xenon in Archean barite: Weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation". Geochimica et Cosmochimica Acta . 73 (22): 6834–6846. Bibcode:2009GeCoA..73.6834P. doi:10.1016/j.gca.2009.08.002.
    25. Münster, A.; Sivers, M. v.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; Feilitzsch, F. v.; Gorla, P.; Gütlein, A.; Hauff, D.; Jochum, J.; Kraus, H.; Lanfranchi, J. -C.; Laubenstein, M.; Loebell, J.; Ortigoza, Y.; Petricca, F.; Potzel, W.; Pröbst, F.; Puimedon, J.; Reindl, F.; Roth, S.; Rottler, K.; Sailer, C.; Schäffner, K.; Schieck, J.; Scholl, S.; Schönert, S.; Seidel, W.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A. (May 2014). "Radiopurity of CaWO4 crystals for direct dark matter search with CRESST and EURECA". Journal of Cosmology and Astroparticle Physics (5): 018. arXiv: 1403.5114 . Bibcode:2014JCAP...05..018M. doi:10.1088/1475-7516/2014/05/018. 018.
    26. Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Incicchitti, A.; Laubenstein, M.; Leoncini, A.; Merlo, V.; Nagorny, S.S.; Nahorna, V.V.; Nisi, S.; Wang, P. (January 2025). "A new measurement of 174Hf alpha decay". Nuclear Physics A. 1053: 122976. doi:10.1016/j.nuclphysa.2024.122976.
    27. Nozzoli, Francesco; Ghezzer, Luigi Ernesto; Nicolaidis, Riccardo; Iuppa, Roberto; Zuccon, Paolo; et al. (European Nuclear Physics Conference (EuNPC 2022)) (8 December 2023). "Investigation of Electron Capture in 176Lu with a LYSO crystal scintillator". EPJ Web of Conf. 290 (1002): 01002. arXiv: 2211.15203 . Bibcode:2023EPJWC.29001002N. doi:10.1051/epjconf/202329001002.
    28. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi: 10.1146/annurev-nucl-010722-074615 .
    29. Wallner, A.; Faestermann, T.; Feige, J.; Feldstein, C.; Knie, K.; Korschinek, G.; Kutschera, W.; Ofan, A.; Paul, M.; Quinto, F.; Rugel, G.; Steier, P. (2015). "Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis". Nature Communications. 6: 5956. arXiv: 1509.08054 . Bibcode:2015NatCo...6.5956W. doi:10.1038/ncomms6956. ISSN   2041-1723. PMC   4309418 . PMID   25601158.
    30. 1 2 Clayton, Donald D.; Morgan, John A. (1977). "Muon production of 92,94Nb in the Earth's crust". Nature. 266 (5604): 712–713. doi:10.1038/266712a0. S2CID   4292459.
    31. Cosmogenic Iron-60 In Iron Meteorites: Measurements By Low-Level Counting.
    32. Interstellar 60Fe detected on Earth - but where is the r-process nuclide 244Pu?
    33. Chiera, Nadine Mariel; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2022-05-28). "High precision half-life measurement of the extinct radio-lanthanide Dysprosium-154". Scientific Reports. 12 (1). Springer Science and Business Media LLC: 8988. Bibcode:2022NatSR..12.8988C. doi: 10.1038/s41598-022-12684-6 . ISSN   2045-2322. PMC   9148308 . PMID   35643721.
    34. "Adopted Levels for 250Cm" (PDF). NNDC Chart of Nuclides.
    35. Kajan, I.; Heinitz, S.; Kossert, K.; Sprung, P.; Dressler, R.; Schumann, D. (2021-10-05). "First direct determination of the 93Mo half-life". Scientific Reports. 11 (1): 19788. Bibcode:2021NatSR..1119788K. doi:10.1038/s41598-021-99253-5. ISSN   2045-2322. PMC   8492754 . PMID   34611245.
    36. Chiera, Nadine M.; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2023). "Determination of the half-life of gadolinium-148". Applied Radiation and Isotopes. 194. Elsevier BV: 110708. Bibcode:2023AppRI.19410708C. doi: 10.1016/j.apradiso.2023.110708 . ISSN   0969-8043. PMID   36731388.
    37. Kmak, K. N.; Neupane, S.; Kolos, K.; et al. (2025). "Measurement of the 175Hf half-life". Physical Review C. 111 (024308). doi:10.1103/PhysRevC.111.024308.
    38. Liang, C. F.; Paris, P.; Sheline, R. K. (2000-09-19). "α decay of 225Ra". Physical Review C. 62 (4). American Physical Society (APS): 047303. Bibcode:2000PhRvC..62d7303L. doi:10.1103/physrevc.62.047303. ISSN   0556-2813.
    39. Half-life determination of 155Tb from mass-separated samples produced at CERN-MEDICIS
    40. Collins, S.M.; Köster, U.; Robinson, A.P.; Ivanov, P.; Cocolios, T.E.; Russell, B.; Fenwick, A.J.; Bernerd, C.; Stegemann, S.; Johnston, K.; Gerami, A.M.; Chrysalidis, K.; Mohamud, H.; Ramirez, N.; Bhaisare, A.; Mewburn-Crook, J.; Cullen, D.M.; Pietras, B.; Pells, S.; Dockx, K.; Stucki, N.; Regan, P.H. (2023). "Determination of the Terbium-152 half-life from mass-separated samples from CERN-ISOLDE and assessment of the radionuclide purity". Applied Radiation and Isotopes. 202. Elsevier BV: 111044. doi: 10.1016/j.apradiso.2023.111044 . ISSN   0969-8043. PMID   37797447.
    41. 1 2 "SHE Factory first experiment – FLEROV LABORATORY of NUCLEAR REACTIONS".
    42. Jagdish K. Tuli, Nuclear Wallet Cards, 7th edition, April 2005, Brookhaven National Laboratory, US National Nuclear Data Center
    43. Interactive chart of nuclides (Brookhaven National Laboratory)