Isotopes of curium

Last updated
Isotopes of curium  (96Cm)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
242Cm synth 162.8 d α 238Pu
SF
CD 208Pb
243Cmsynth29.1 yα 239Pu
ε 243Am
SF
244Cmsynth18.11 yα 240Pu
SF
245Cmsynth8250 yα 241Pu
SF
246Cmsynth4760 yα 242Pu
SF
247Cmsynth1.56×107 yα 243Pu
248Cmsynth3.480×105 yα 244Pu
SF
250Cmsynth8300 ySF
α 246Pu
β 250Bk

Curium (96Cm) is an artificial element with an atomic number of 96. Because it is an artificial element, a standard atomic weight cannot be given, and it has no stable isotopes. The first isotope synthesized was 242Cm in 1944, which has 146 neutrons.

Contents

There are 19 known radioisotopes ranging from 233Cm to 251Cm. There are also ten known nuclear isomers. The longest-lived isotope is 247Cm, with half-life 15.6 million years – orders of magnitude longer than that of any known isotope beyond curium, and long enough to study as a possible extinct radionuclide that would be produced by the r-process. [2] [3] The longest-lived known isomer is 246mCm with a half-life of 1.12 seconds.

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2] [n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

Spin and
parity
[n 6] [n 4]
Excitation energy [n 4]
233Cm96137233.05077(8)23+13
−6
 s
β+ (80%)233Am3/2+#
α (20%)229Pu
234Cm96138234.05016(2)52(9) sβ+ (71%)234Am0+
α (27%)230Pu
SF (2%)(various)
235Cm [4] 96139235.05143(22)#300+250
−100
 s
β+ (99.0%)235Am(5/2+)
α (1.0%)231Pu
236Cm96140236.05141(22)#6.8(8) minβ+ (82%)236Am0+
α (18%)232Pu
SF (<0.1%) [5] (various)
237Cm [6] [4] 96141237.05290(22)#>660 sβ+237Am(5/2+)
α (<1%)233Pu
238Cm [6] 96142238.05303(4)2.2(4) h EC (~94%)238Am0+
α (~6%)234Pu
239Cm [1] 96143239.05496(11)#2.5(4) hβ+239Am(7/2−)
α (6.2x10−3%)235Pu
240Cm96144240.0555295(25)27(1) dα (99.5%)236Pu0+
EC (.5%)240Am
SF (3.9×10−6%)(various)
241Cm96145241.0576530(23)32.8(2) dEC (99%)241Am1/2+
α (1%)237Pu
242Cm [n 7] 96146242.0588358(20)162.8(2) dα [n 8] 238Pu0+
SF (6.33×10−6%)(various)
CD (10−14%) [n 9] 208Pb
34Si
242mCm2800(100) keV180(70) ns
243Cm96147243.0613891(22)29.1(1) yα (99.71%)239Pu5/2+
EC (.29%)243Am
SF (5.3×10−9%)(various)
243mCm87.4(1) keV1.08(3) μsIT243Cm1/2+
244Cm [n 7] 96148244.0627526(20)18.10(2) yα240Pu0+
SF (1.34×10−4%)(various)
244m1Cm1040.188(12) keV34(2) ms IT 244Cm6+
244m2Cm1100(900)# keV>500 nsSF(various)
245Cm96149245.0654912(22)8.5(1)×103 yα241Pu7/2+
SF (6.1×10−7%)(various)
245mCm355.92(10) keV290(20) nsIT245Cm1/2+
246Cm96150246.0672237(22)4.76(4)×103 yα (99.97%)242Pu0+
SF (.0261%)(various)
246mCm1179.66(13) keV1.12(0.24) sIT246Cm8−
247Cm96151247.070354(5)1.56(5)×107 yα243Pu9/2−
247m1Cm227.38(19) keV26.3(0.3) μsIT247Cm5/2+
247m2Cm404.90(3) keV100.6(0.6) nsIT247Cm1/2+
248Cm96152248.072349(5)3.48(6)×105 yα (91.74%)244Pu0+
SF (8.26%)(various)
248mCm1458.1(1) keV146(18) μsIT248Cm(8−)
249Cm96153249.075953(5)64.15(3) minβ249Bk1/2(+)
249mCm48.758(17) keV23 μsα245Pu(7/2+)
250Cm96154250.078357(12)8300# ySF (74%) [n 10] (various)0+
α (18%)246Pu
β (8%)250Bk
251Cm96155251.082285(24)16.8(2) minβ251Bk(1/2+)
This table header & footer:
  1. mCm  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    CD: Cluster decay
    EC: Electron capture
    SF: Spontaneous fission
  6. () spin value  Indicates spin with weak assignment arguments.
  7. 1 2 Most common isotopes
  8. Theoretically capable of β+β+ decay to 242Pu [1]
  9. Heaviest known nuclide to undergo cluster decay
  10. The nuclide with the lowest atomic number known to undergo spontaneous fission as the main decay mode

Actinides vs fission products

Actinides [7] by decay chain Half-life
range (a)
Fission products of 235U by yield [8]
4n 4n + 1 4n + 2 4n + 3 4.5–7%0.04–1.25%<0.001%
228 Ra 4–6 a 155 Euþ
248 Bk [9] > 9 a
244 Cmƒ 241 Puƒ 250 Cf 227 Ac 10–29 a 90 Sr 85 Kr 113m Cdþ
232 Uƒ 238 Puƒ 243 Cmƒ 29–97 a 137 Cs 151 Smþ 121m Sn
249 Cfƒ 242m Amƒ141–351 a

No fission products have a half-life
in the range of 100 a–210 ka ...

241 Amƒ 251 Cfƒ [10] 430–900 a
226 Ra 247 Bk1.3–1.6 ka
240 Pu 229 Th 246 Cmƒ 243 Amƒ4.7–7.4 ka
245 Cmƒ 250 Cm8.3–8.5 ka
239 Puƒ24.1 ka
230 Th 231 Pa32–76 ka
236 Npƒ 233 Uƒ 234 U 150–250 ka 99 Tc 126 Sn
248 Cm 242 Pu 327–375 ka 79 Se
1.33 Ma 135 Cs
237 Npƒ 1.61–6.5 Ma 93 Zr 107 Pd
236 U 247 Cmƒ 15–24 Ma 129 I
244 Pu80 Ma

... nor beyond 15.7 Ma [11]

232 Th 238 U 235 Uƒ№0.7–14.1 Ga

Related Research Articles

Protactinium (91Pa) has no stable isotopes. The four naturally occurring isotopes allow a standard atomic weight to be given.

Naturally occurring platinum (78Pt) consists of five stable isotopes (192Pt, 194Pt, 195Pt, 196Pt, 198Pt) and one very long-lived (half-life 4.83×1011 years) radioisotope (190Pt). There are also 34 known synthetic radioisotopes, the longest-lived of which is 193Pt with a half-life of 50 years. All other isotopes have half-lives under a year, most under a day. All isotopes of platinum are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed. Platinum-195 is the most abundant isotope.

Naturally occurring tungsten (74W) consists of five isotopes. Four are considered stable (182W, 183W, 184W, and 186W) and one is slightly radioactive, 180W, with an extremely long half-life of 1.8 ± 0.2 exayears (1018 years). On average, two alpha decays of 180W occur per gram of natural tungsten per year, so for most practical purposes, 180W can be considered stable. Theoretically, all five can decay into isotopes of element 72 (hafnium) by alpha emission, but only 180W has been observed to do so. The other naturally occurring isotopes have not been observed to decay (they are observationally stable), and lower bounds for their half-lives have been established:

Natural hafnium (72Hf) consists of five observationally stable isotopes (176Hf, 177Hf, 178Hf, 179Hf, and 180Hf) and one very long-lived radioisotope, 174Hf, with a half-life of 7.0×1016 years. In addition, there are 34 known synthetic radioisotopes, the most stable of which is 182Hf with a half-life of 8.9×106 years. This extinct radionuclide is used in hafnium–tungsten dating to study the chronology of planetary differentiation.

<span class="mw-page-title-main">Isotopes of holmium</span>

Natural holmium (67Ho) contains one observationally stable isotope, 165Ho. The below table lists 36 isotopes spanning 140Ho through 175Ho as well as 33 nuclear isomers. Among the known synthetic radioactive isotopes; the most stable one is 163Ho, with a half-life of 4,570 years. All other radioisotopes have half-lives not greater than 1.117 days in their ground states, and most have half-lives under 3 hours.

Naturally occurring dysprosium (66Dy) is composed of 7 stable isotopes, 156Dy, 158Dy, 160Dy, 161Dy, 162Dy, 163Dy and 164Dy, with 164Dy being the most abundant. Twenty-nine radioisotopes have been characterized, with the most stable being 154Dy with a half-life of 1.4 million years, 159Dy with a half-life of 144.4 days, and 166Dy with a half-life of 81.6 hours. All of the remaining radioactive isotopes have half-lives that are less than 10 hours, and the majority of these have half-lives that are less than 30 seconds. This element also has 12 meta states, with the most stable being 165mDy, 147mDy and 145mDy.

Naturally occurring terbium (65Tb) is composed of one stable isotope, 159Tb. Thirty-seven radioisotopes have been characterized, with the most stable being 158Tb with a half-life of 180 years, 157Tb with a half-life of 71 years, and 160Tb with a half-life of 72.3 days. All of the remaining radioactive isotopes have half-lives that are less than 6.907 days, and the majority of these have half-lives that are less than 24 seconds. This element also has 27 meta states, with the most stable being 156m1Tb, 154m2Tb and 154m1Tb.

Naturally occurring gadolinium (64Gd) is composed of 6 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd, 158Gd and 160Gd, and 1 radioisotope, 152Gd, with 158Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of 160Gd has never been observed; only a lower limit on its half-life of more than 1.3×1021 years has been set experimentally.

Promethium (61Pm) is an artificial element, except in trace quantities as a product of spontaneous fission of 238U and 235U and alpha decay of 151Eu, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was first synthesized in 1945.

<span class="mw-page-title-main">Isotopes of lanthanum</span> Isotopes

Naturally occurring lanthanum (57La) is composed of one stable (139La) and one radioactive (138La) isotope, with the stable isotope, 139La, being the most abundant (99.91% natural abundance). There are 39 radioisotopes that have been characterized, with the most stable being 138La, with a half-life of 1.02×1011 years; 137La, with a half-life of 60,000 years and 140La, with a half-life of 1.6781 days. The remaining radioactive isotopes have half-lives that are less than a day and the majority of these have half-lives that are less than 1 minute. This element also has 12 nuclear isomers, the longest-lived of which is 132mLa, with a half-life of 24.3 minutes. Lighter isotopes mostly decay to isotopes of barium and heavy ones mostly decay to isotopes of cerium. 138La can decay to both.

Naturally occurring barium (56Ba) is a mix of six stable isotopes and one very long-lived radioactive primordial isotope, barium-130, identified as being unstable by geochemical means (from analysis of the presence of its daughter xenon-130 in rocks) in 2001. This nuclide decays by double electron capture (absorbing two electrons and emitting two neutrinos), with a half-life of (0.5–2.7)×1021 years (about 1011 times the age of the universe).

Tin (50Sn) is the element with the greatest number of stable isotopes. This is probably related to the fact that 50 is a "magic number" of protons. In addition, twenty-nine unstable tin isotopes are known, including tin-100 (100Sn) and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.

Naturally occurring cadmium (48Cd) is composed of 8 isotopes. For two of them, natural radioactivity was observed, and three others are predicted to be radioactive but their decays have not been observed, due to extremely long half-lives. The two natural radioactive isotopes are 113Cd (beta decay, half-life is 8.04 × 1015 years) and 116Cd (two-neutrino double beta decay, half-life is 2.8 × 1019 years). The other three are 106Cd, 108Cd (double electron capture), and 114Cd (double beta decay); only lower limits on their half-life times have been set. Three isotopes—110Cd, 111Cd, and 112Cd—are theoretically stable. Among the isotopes absent in natural cadmium, the most long-lived are 109Cd with a half-life of 462.6 days, and 115Cd with a half-life of 53.46 hours. All of the remaining radioactive isotopes have half-lives that are less than 2.5 hours and the majority of these have half-lives that are less than 5 minutes. This element also has 12 known meta states, with the most stable being 113mCd (t1/2 14.1 years), 115mCd (t1/2 44.6 days) and 117mCd (t1/2 3.36 hours).

Arsenic (33As) has 32 known isotopes and at least 10 isomers. Only one of these isotopes, 75As, is stable; as such, it is considered a monoisotopic element. The longest-lived radioisotope is 73As with a half-life of 80 days.

Naturally occurring manganese (25Mn) is composed of one stable isotope, 55Mn. Twenty-seven radioisotopes have been characterized, with the most stable being 53Mn with a half-life of 3.7 million years, 54Mn with a half-life of 312.3 days, and 52Mn with a half-life of 5.591 days. All of the remaining radioactive isotopes have half-lives that are less than 3 hours and the majority of these have half-lives that are less than a minute. This element also has seven meta states.

Naturally occurring scandium (21Sc) is composed of one stable isotope, 45Sc. Twenty-seven radioisotopes have been characterized, with the most stable being 46Sc with a half-life of 83.8 days, 47Sc with a half-life of 3.35 days, and 48Sc with a half-life of 43.7 hours and 44Sc with a half-life of 3.97 hours. All the remaining isotopes have half-lives that are less than four hours, and the majority of these have half-lives that are less than two minutes, the least stable being proton unbound 39Sc with a half-life shorter than 300 nanoseconds. This element also has 13 meta states with the most stable being 44m2Sc.

Berkelium (97Bk) is an artificial element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 243Bk in 1949. There are twenty known radioisotopes, from 233Bk and 233Bk to 253Bk, and six nuclear isomers. The longest-lived isotope is 247Bk with a half-life of 1,380 years.

Fermium (100Fm) is a synthetic element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be discovered was 255Fm in 1952. 250Fm was independently synthesized shortly after the discovery of 255Fm. There are 20 known radioisotopes ranging in atomic mass from 241Fm to 260Fm, and 4 nuclear isomers, 247mFm, 250mFm, 251mFm, and 253mFm. The longest-lived isotope is 257Fm with a half-life of 100.5 days, and the longest-lived isomer is 247mFm with a half-life of 5.1 seconds.

Einsteinium (99Es) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be discovered was 253Es in 1952. There are 18 known radioisotopes from 240Es to 257Es, and 4 nuclear isomers. The longest-lived isotope is 252Es with a half-life of 471.7 days, or around 1.293 years.

Mendelevium (101Md) is a synthetic element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 256Md in 1955. There are 17 known radioisotopes, ranging in atomic mass from 244Md to 260Md, and 5 isomers. The longest-lived isotope is 258Md with a half-life of 51.3 days, and the longest-lived isomer is 258mMd with a half-life of 57 minutes.

References

  1. 1 2 3 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. Côté, Benoit; Eichler, Marius; Yagüe López, Andrés; Vassh, Nicole; Mumpower, Matthew R.; Világos, Blanka; Soós, Benjámin; Arcones, Almudena; Sprouse, Trevor M.; Surman, Rebecca; Pignatari, Marco; Pető, Mária K.; Wehmeyer, Benjamin; Rauscher, Thomas; Lugaro, Maria (26 February 2021). "129I and 247Cm in meteorites constrain the last astrophysical source of solar r-process elements". Science. 371 (6532): 945–948. arXiv: 2006.04833 . Bibcode:2021Sci...371..945C. doi:10.1126/science.aba1111. PMID   33632846. S2CID   232050526.
  3. Davis, A.M.; McKeegan, K.D. (2014). "Short-Lived Radionuclides and Early Solar System Chronology". Treatise on Geochemistry: 383. doi:10.1016/B978-0-08-095975-7.00113-3. ISBN   9780080983004.
  4. 1 2 Khuyagbaatar, J.; Heßberger, F. P.; Hofmann, S.; Ackermann, D.; Burkhard, H. G.; Heinz, S.; Kindler, B.; Kojouharov, I.; Lommel, B.; Mann, R.; Maurer, J.; Nishio, K. (12 October 2020). "α decay of Fm 243 143 and Fm 245 145 , and of their daughter nuclei". Physical Review C. 102 (4): 044312. doi:10.1103/PhysRevC.102.044312. ISSN   2469-9985. S2CID   241259726 . Retrieved 24 June 2023.
  5. Khuyagbaatar, J.; Heßberger, F. P.; Hofmann, S.; Ackermann, D.; Comas, V. S.; Heinz, S.; Heredia, J. A.; Kindler, B.; Kojouharov, I.; Lommel, B.; Mann, R.; Nishio, K.; Yakushev, A. (1 October 2010). "The new isotope 236Cm and new data on 233Cm and 237, 238, 240Cf" (PDF). The European Physical Journal A. 46 (1): 59–67. Bibcode:2010EPJA...46...59K. doi:10.1140/epja/i2010-11026-9. ISSN   1434-601X. S2CID   122809010 . Retrieved 24 June 2023.
  6. 1 2 Asai, M.; Tsukada, K.; Ichikawa, S.; Sakama, M.; Haba, H.; Nishinaka, I.; Nagame, Y.; Goto, S.; Kojima, Y.; Oura, Y.; Shibata, M. (20 June 2006). "α decay of 238Cm and the new isotope 237Cm". Physical Review C. 73 (6): 067301. doi:10.1103/PhysRevC.73.067301 . Retrieved 24 June 2023.
  7. Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here.
  8. Specifically from thermal neutron fission of uranium-235, e.g. in a typical nuclear reactor.
  9. Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4.
    "The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk248 with a half-life greater than 9 [years]. No growth of Cf248 was detected, and a lower limit for the β half-life can be set at about 104 [years]. No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 [years]."
  10. This is the heaviest nuclide with a half-life of at least four years before the "sea of instability".
  11. Excluding those "classically stable" nuclides with half-lives significantly in excess of 232Th; e.g., while 113mCd has a half-life of only fourteen years, that of 113Cd is eight quadrillion years.