Isotopes of zinc

Last updated

Isotopes of zinc  (30Zn)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
64Zn49.2% stable
65Zn synth 243.94 d β+ 65Cu
66Zn27.7%stable
67Zn4.04%stable
68Zn18.4%stable
69Znsynth56.4 min β 69Ga
69mZnsynth13.75 h IT 69Zn
β69Ga
70Zn0.610%stable
71mZnsynth4.15 hβ71Ga
72Znsynth46.5 hβ 72Ga
Standard atomic weight Ar°(Zn)

Naturally occurring zinc (30Zn) is composed of the 5 stable isotopes 64Zn, 66Zn, 67Zn, 68Zn, and 70Zn with 64Zn being the most abundant (48.6% natural abundance). Twenty-eight radioisotopes have been characterised with the most stable being 65Zn with a half-life of 243.94 days, and then 72Zn with a half-life of 46.5 hours. All of the remaining radioactive isotopes have half-lives that are less than 14 hours and the majority of these have half-lives that are less than a second. This element also has 10 meta states.

Contents

Zinc has been proposed as a "salting" material for nuclear weapons. A jacket of isotopically enriched 64Zn, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would be transmuted to 65Zn, which emits 1.115  MeV of gamma radiation in about half of decays, [4] and would significantly increase the radioactivity of the weapon's fallout for several years. Such a weapon is not known to have ever been built, tested, or used. [5]

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [6]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity [1]
[n 7] [n 4]
Natural abundance (mole fraction)
Excitation energyNormal proportion [1] Range of variation
54Zn302453.99388(23)#1.8(5) ms 2p 52Ni0+
55Zn302554.98468(43)#19.8(13) ms β+, p (91.0%)54Ni5/2−#
β+ (9.0%)55Cu
56Zn302655.97274(43)#32.4(7) msβ+, p (88.0%)55Ni0+
β+ (12.0%)56Cu
57Zn302756.96506(22)#45.7(6) msβ+, p (87%)56Ni7/2−#
β+ (13%)57Cu
58Zn302857.954590(54)86.0(19) msβ+ (99.3%)58Cu0+
β+, p (0.7%)57Ni
59Zn302958.94931189(81)178.7(13) msβ+ (99.90%)59Cu3/2−
β+, p (0.10%)58Ni
60Zn303059.94184132(59)2.38(5) minβ+60Cu0+
61Zn303160.939507(17)89.1(2) sβ+61Cu3/2−
62Zn303261.93433336(66)9.193(15) hβ+62Cu0+
63Zn303362.9332111(17)38.47(5) minβ+63Cu3/2−
64Zn303463.92914178(69) Observationally Stable [n 8] 0+0.4917(75)
65Zn303564.92924053(69)243.94(4) d EC (98.579(7)%)65Cu5/2−
β+ (1.421(7)%) [4]
65mZn53.928(10) keV1.6(6) μs IT 65Zn1/2−
66Zn303665.92603364(80)Stable0+0.2773(98)
67Zn303766.92712742(81)Stable5/2−0.0404(16)
67m1Zn93.312(5) keV9.15(7) μsIT67Zn1/2−
67m2Zn604.48(5) keV333(14) nsIT67Zn9/2+
68Zn303867.92484423(84)Stable0+0.1845(63)
69Zn303968.92655036(85)56.4(9) minβ69Ga1/2−
69mZn438.636(18) keV13.747(11) h IT (99.97%)69Zn9/2+
β (0.033%)69Ga
70Zn304069.9253192(21)Observationally Stable [n 9] 0+0.0061(10)
71Zn304170.9277196(28)2.40(5) minβ71Ga1/2−
71mZn157.7(13) keV4.148(12) hβ71Ga9/2+
IT?71Zn
72Zn304271.9268428(23)46.5(1) hβ72Ga0+
73Zn304372.9295826(20)24.5(2) sβ73Ga1/2−
73mZn195.5(2) keV13.0(2) msIT73Zn5/2+
74Zn304473.9294073(27)95.6(12) sβ74Ga0+
75Zn304574.9328402(21)10.2(2) sβ75Ga7/2+
75mZn126.94(9) keV5# sβ?75Ga1/2−
IT?75Zn
76Zn304675.9331150(16)5.7(3) sβ76Ga0+
77Zn304776.9368872(21)2.08(5) sβ77Ga7/2+
77mZn772.440(15) keV1.05(10) sβ (66%)77Ga1/2−
IT (34%)77Zn
78Zn304877.9382892(21)1.47(15) sβ78Ga0+
β, n?77Ga
78mZn2673.7(6) keV320(6) nsIT78Zn(8+)
79Zn304978.9426381(24)746(42) msβ (98.3%)79Ga9/2+
β, n (1.7%)78Ga
79mZn942(10) keV [7] >200 msβ?79Ga1/2+
IT?79Zn
80Zn305079.9445529(28)562.2(30) msβ (98.64%)80Ga0+
β, n (1.36%)79Ga
81Zn305180.9504026(54)299.4(21) msβ (77%)81Ga(1/2+, 5/2+)
β, n (23%)80Ga
β, 2n?79Ga
82Zn305281.9545741(33)177.9(25) msβ, n (69%)81Ga0+
β (31%)82Ga
β, 2n?80Ga
83Zn305382.96104(32)#100(3) msβ, n (71%)82Ga3/2+#
β (29%)83Ga
β, 2n?81Ga
84Zn305483.96583(43)#54(8) msβ, n (73%)83Ga0+
β (27%)84Ga
β, 2n?82Ga
85Zn305584.97305(54)#40# ms [>400 ns]β?85Ga5/2+#
β, n?84Ga
β, 2n?83Ga
86Zn [8] 305685.97846(54)#β?86Ga0+
β, n?85Ga
87Zn [8] 3057
This table header & footer:
  1. mZn  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. Believed to undergo β+β+ decay to 64Ni with a half-life over 6.0×1016 y
  9. Believed to undergo ββ decay to 70Ge with a half-life over 3.8×1018 y

See also

Daughter products other than zinc

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Zinc". CIAAW. 2007.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. 1 2 "65Zn ε decay" (PDF). NNDC Chart of Nuclides.
  5. D. T. Win, M. Al Masum (2003). "Weapons of Mass Destruction" (PDF). Assumption University Journal of Technology . 6 (4): 199–219.
  6. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  7. Nies, L.; Canete, L.; Dao, D. D.; Giraud, S.; Kankainen, A.; Lunney, D.; Nowacki, F.; Bastin, B.; Stryjczyk, M.; Ascher, P.; Blaum, K.; Cakirli, R. B.; Eronen, T.; Fischer, P.; Flayol, M.; Girard Alcindor, V.; Herlert, A.; Jokinen, A.; Khanam, A.; Köster, U.; Lange, D.; Moore, I. D.; Müller, M.; Mougeot, M.; Nesterenko, D. A.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; de Roubin, A.; Rubchenya, V.; Schweiger, Ch.; Schweikhard, L.; Vilen, M.; Äystö, J. (30 November 2023). "Further Evidence for Shape Coexistence in Zn 79 m near Doubly Magic Ni 78". Physical Review Letters. 131 (22). arXiv: 2310.16915 . doi:10.1103/PhysRevLett.131.222503.
  8. 1 2 Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313.