This article includes a list of general references, but it lacks sufficient corresponding inline citations .(February 2011) |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Zn) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring zinc (30Zn) is composed of the 5 stable isotopes 64Zn, 66Zn, 67Zn, 68Zn, and 70Zn with 64Zn being the most abundant (48.6% natural abundance). Twenty-eight radioisotopes have been characterised with the most stable being 65Zn with a half-life of 244.26 days, and then 72Zn with a half-life of 46.5 hours. All of the remaining radioactive isotopes have half-lives that are less than 14 hours and the majority of these have half-lives that are less than 1 second. This element also has 10 meta states.
Zinc has been proposed as a "salting" material for nuclear weapons. A jacket of isotopically enriched 64Zn, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope 65Zn with a half-life of 244 days and produce approximately 1.115 MeV [4] of gamma radiation, significantly increasing the radioactivity of the weapon's fallout for several years. Such a weapon is not known to have ever been built, tested, or used. [5]
Nuclide [n 1] | Z | N | Isotopic mass (Da) [6] [n 2] [n 3] | Half-life [1] [n 4] | Decay mode [1] [n 5] | Daughter isotope [n 6] | Spin and parity [1] [n 7] [n 4] | Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion [1] | Range of variation | |||||||||||||||||
54Zn | 30 | 24 | 53.99388(23)# | 1.8(5) ms | 2p | 52Ni | 0+ | ||||||||||||
55Zn | 30 | 25 | 54.98468(43)# | 19.8(13) ms | β+, p (91.0%) | 54Ni | 5/2−# | ||||||||||||
β+ (9.0%) | 55Cu | ||||||||||||||||||
56Zn | 30 | 26 | 55.97274(43)# | 32.4(7) ms | β+, p (88.0%) | 55Ni | 0+ | ||||||||||||
β+ (12.0%) | 56Cu | ||||||||||||||||||
57Zn | 30 | 27 | 56.96506(22)# | 45.7(6) ms | β+, p (87%) | 56Ni | 7/2−# | ||||||||||||
β+ (13%) | 57Cu | ||||||||||||||||||
58Zn | 30 | 28 | 57.954590(54) | 86.0(19) ms | β+ (99.3%) | 58Cu | 0+ | ||||||||||||
β+, p (0.7%) | 57Ni | ||||||||||||||||||
59Zn | 30 | 29 | 58.94931189(81) | 178.7(13) ms | β+ (99.90%) | 59Cu | 3/2− | ||||||||||||
β+, p (0.10%) | 58Ni | ||||||||||||||||||
60Zn | 30 | 30 | 59.94184132(59) | 2.38(5) min | β+ | 60Cu | 0+ | ||||||||||||
61Zn | 30 | 31 | 60.939507(17) | 89.1(2) s | β+ | 61Cu | 3/2− | ||||||||||||
62Zn | 30 | 32 | 61.93433336(66) | 9.193(15) h | β+ | 62Cu | 0+ | ||||||||||||
63Zn | 30 | 33 | 62.9332111(17) | 38.47(5) min | β+ | 63Cu | 3/2− | ||||||||||||
64Zn | 30 | 34 | 63.92914178(69) | Observationally Stable [n 8] | 0+ | 0.4917(75) | |||||||||||||
65Zn | 30 | 35 | 64.92924053(69) | 243.94(4) d | β+ | 65Cu | 5/2− | ||||||||||||
65mZn | 53.928(10) keV | 1.6(6) μs | IT | 65Zn | 1/2− | ||||||||||||||
66Zn | 30 | 36 | 65.92603364(80) | Stable | 0+ | 0.2773(98) | |||||||||||||
67Zn | 30 | 37 | 66.92712742(81) | Stable | 5/2− | 0.0404(16) | |||||||||||||
67m1Zn | 93.312(5) keV | 9.15(7) μs | IT | 67Zn | 1/2− | ||||||||||||||
67m2Zn | 604.48(5) keV | 333(14) ns | IT | 67Zn | 9/2+ | ||||||||||||||
68Zn | 30 | 38 | 67.92484423(84) | Stable | 0+ | 0.1845(63) | |||||||||||||
69Zn | 30 | 39 | 68.92655036(85) | 56.4(9) min | β− | 69Ga | 1/2− | ||||||||||||
69mZn | 438.636(18) keV | 13.747(11) h | IT (99.97%) | 69Zn | 9/2+ | ||||||||||||||
β− (0.033%) | 69Ga | ||||||||||||||||||
70Zn | 30 | 40 | 69.9253192(21) | Observationally Stable [n 9] | 0+ | 0.0061(10) | |||||||||||||
71Zn | 30 | 41 | 70.9277196(28) | 2.40(5) min | β− | 71Ga | 1/2− | ||||||||||||
71mZn | 157.7(13) keV | 4.148(12) h | β− | 71Ga | 9/2+ | ||||||||||||||
IT? | 71Zn | ||||||||||||||||||
72Zn | 30 | 42 | 71.9268428(23) | 46.5(1) h | β− | 72Ga | 0+ | ||||||||||||
73Zn | 30 | 43 | 72.9295826(20) | 24.5(2) s | β− | 73Ga | 1/2− | ||||||||||||
73mZn | 195.5(2) keV | 13.0(2) ms | IT | 73Zn | 5/2+ | ||||||||||||||
74Zn | 30 | 44 | 73.9294073(27) | 95.6(12) s | β− | 74Ga | 0+ | ||||||||||||
75Zn | 30 | 45 | 74.9328402(21) | 10.2(2) s | β− | 75Ga | 7/2+ | ||||||||||||
75mZn | 126.94(9) keV | 5# s | β−? | 75Ga | 1/2− | ||||||||||||||
IT? | 75Zn | ||||||||||||||||||
76Zn | 30 | 46 | 75.9331150(16) | 5.7(3) s | β− | 76Ga | 0+ | ||||||||||||
77Zn | 30 | 47 | 76.9368872(21) | 2.08(5) s | β− | 77Ga | 7/2+ | ||||||||||||
77mZn | 772.440(15) keV | 1.05(10) s | β− (66%) | 77Ga | 1/2− | ||||||||||||||
IT (34%) | 77Zn | ||||||||||||||||||
78Zn | 30 | 48 | 77.9382892(21) | 1.47(15) s | β− | 78Ga | 0+ | ||||||||||||
β−, n? | 77Ga | ||||||||||||||||||
78mZn | 2673.7(6) keV | 320(6) ns | IT | 78Zn | (8+) | ||||||||||||||
79Zn | 30 | 49 | 78.9426381(24) | 746(42) ms | β− (98.3%) | 79Ga | 9/2+ | ||||||||||||
β−, n (1.7%) | 78Ga | ||||||||||||||||||
79mZn | 942(10) keV [7] | >200 ms | β−? | 79Ga | 1/2+ | ||||||||||||||
IT? | 79Zn | ||||||||||||||||||
80Zn | 30 | 50 | 79.9445529(28) | 562.2(30) ms | β− (98.64%) | 80Ga | 0+ | ||||||||||||
β−, n (1.36%) | 79Ga | ||||||||||||||||||
81Zn | 30 | 51 | 80.9504026(54) | 299.4(21) ms | β− (77%) | 81Ga | (1/2+, 5/2+) | ||||||||||||
β−, n (23%) | 80Ga | ||||||||||||||||||
β−, 2n? | 79Ga | ||||||||||||||||||
82Zn | 30 | 52 | 81.9545741(33) | 177.9(25) ms | β−, n (69%) | 81Ga | 0+ | ||||||||||||
β− (31%) | 82Ga | ||||||||||||||||||
β−, 2n? | 80Ga | ||||||||||||||||||
83Zn | 30 | 53 | 82.96104(32)# | 100(3) ms | β−, n (71%) | 82Ga | 3/2+# | ||||||||||||
β− (29%) | 83Ga | ||||||||||||||||||
β−, 2n? | 81Ga | ||||||||||||||||||
84Zn | 30 | 54 | 83.96583(43)# | 54(8) ms | β−, n (73%) | 83Ga | 0+ | ||||||||||||
β− (27%) | 84Ga | ||||||||||||||||||
β−, 2n? | 82Ga | ||||||||||||||||||
85Zn | 30 | 55 | 84.97305(54)# | 40# ms [>400 ns] | β−? | 85Ga | 5/2+# | ||||||||||||
β−, n? | 84Ga | ||||||||||||||||||
β−, 2n? | 83Ga | ||||||||||||||||||
86Zn [8] | 30 | 56 | 85.97846(54)# | β−? | 86Ga | 0+ | |||||||||||||
β−, n? | 85Ga | ||||||||||||||||||
87Zn [8] | 30 | 57 | |||||||||||||||||
This table header & footer: |
IT: | Isomeric transition |
n: | Neutron emission |
p: | Proton emission |
Thallium (81Tl) has 41 isotopes with atomic masses that range from 176 to 216. 203Tl and 205Tl are the only stable isotopes and 204Tl is the most stable radioisotope with a half-life of 3.78 years. 207Tl, with a half-life of 4.77 minutes, has the longest half-life of naturally occurring Tl radioisotopes. All isotopes of thallium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.
There are seven stable isotopes of mercury (80Hg) with 202Hg being the most abundant (29.86%). The longest-lived radioisotopes are 194Hg with a half-life of 444 years, and 203Hg with a half-life of 46.612 days. Most of the remaining 40 radioisotopes have half-lives that are less than a day. 199Hg and 201Hg are the most often studied NMR-active nuclei, having spin quantum numbers of 1/2 and 3/2 respectively. All isotopes of mercury are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed. These isotopes are predicted to undergo either alpha decay or double beta decay.
Naturally occurring platinum (78Pt) consists of five stable isotopes (192Pt, 194Pt, 195Pt, 196Pt, 198Pt) and one very long-lived (half-life 4.83×1011 years) radioisotope (190Pt). There are also 34 known synthetic radioisotopes, the longest-lived of which is 193Pt with a half-life of 50 years. All other isotopes have half-lives under a year, most under a day. All isotopes of platinum are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed. Platinum-195 is the most abundant isotope.
Naturally occurring tungsten (74W) consists of five isotopes. Four are considered stable (182W, 183W, 184W, and 186W) and one is slightly radioactive, 180W, with an extremely long half-life of 1.8 ± 0.2 exayears (1018 years). On average, two alpha decays of 180W occur per gram of natural tungsten per year, so for most practical purposes, 180W can be considered stable. Theoretically, all five can decay into isotopes of element 72 (hafnium) by alpha emission, but only 180W has been observed to do so. The other naturally occurring isotopes have not been observed to decay (they are observationally stable), and lower bounds for their half-lives have been established:
Natural hafnium (72Hf) consists of five observationally stable isotopes (176Hf, 177Hf, 178Hf, 179Hf, and 180Hf) and one very long-lived radioisotope, 174Hf, with a half-life of 7.0×1016 years. In addition, there are 34 known synthetic radioisotopes, the most stable of which is 182Hf with a half-life of 8.9×106 years. This extinct radionuclide is used in hafnium–tungsten dating to study the chronology of planetary differentiation.
Naturally occurring ytterbium (70Yb) is composed of seven stable isotopes: 168Yb, 170Yb–174Yb, and 176Yb, with 174Yb being the most abundant. 30 radioisotopes have been characterized, with the most stable being 169Yb with a half-life of 32.014 days, 175Yb with a half-life of 4.185 days, and 166Yb with a half-life of 56.7 hours. All of the remaining radioactive isotopes have half-lives that are less than 2 hours, and the majority of these have half-lives that are less than 20 minutes. This element also has 18 meta states, with the most stable being 169mYb.
Natural holmium (67Ho) contains one observationally stable isotope, 165Ho. The below table lists 36 isotopes spanning 140Ho through 175Ho as well as 33 nuclear isomers. Among the known synthetic radioactive isotopes; the most stable one is 163Ho, with a half-life of 4,570 years. All other radioisotopes have half-lives not greater than 1.117 days in their ground states, and most have half-lives under 3 hours.
Naturally occurring dysprosium (66Dy) is composed of 7 stable isotopes, 156Dy, 158Dy, 160Dy, 161Dy, 162Dy, 163Dy and 164Dy, with 164Dy being the most abundant. Twenty-nine radioisotopes have been characterized, with the most stable being 154Dy with a half-life of 1.4 million years, 159Dy with a half-life of 144.4 days, and 166Dy with a half-life of 81.6 hours. All of the remaining radioactive isotopes have half-lives that are less than 10 hours, and the majority of these have half-lives that are less than 30 seconds. This element also has 12 meta states, with the most stable being 165mDy, 147mDy and 145mDy.
Naturally occurring terbium (65Tb) is composed of one stable isotope, 159Tb. Thirty-seven radioisotopes have been characterized, with the most stable being 158Tb with a half-life of 180 years, 157Tb with a half-life of 71 years, and 160Tb with a half-life of 72.3 days. All of the remaining radioactive isotopes have half-lives that are less than 6.907 days, and the majority of these have half-lives that are less than 24 seconds. This element also has 27 meta states, with the most stable being 156m1Tb, 154m2Tb and 154m1Tb.
Naturally occurring gadolinium (64Gd) is composed of 6 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd, 158Gd and 160Gd, and 1 radioisotope, 152Gd, with 158Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of 160Gd has never been observed; only a lower limit on its half-life of more than 1.3×1021 years has been set experimentally.
Naturally occurring cerium (58Ce) is composed of 4 stable isotopes: 136Ce, 138Ce, 140Ce, and 142Ce, with 140Ce being the most abundant and the only one theoretically stable; 136Ce, 138Ce, and 142Ce are predicted to undergo double beta decay but this process has never been observed. There are 35 radioisotopes that have been characterized, with the most stable being 144Ce, with a half-life of 284.893 days; 139Ce, with a half-life of 137.640 days and 141Ce, with a half-life of 32.501 days. All of the remaining radioactive isotopes have half-lives that are less than 4 days and the majority of these have half-lives that are less than 10 minutes. This element also has 10 meta states.
Naturally occurring lanthanum (57La) is composed of one stable (139La) and one radioactive (138La) isotope, with the stable isotope, 139La, being the most abundant (99.91% natural abundance). There are 39 radioisotopes that have been characterized, with the most stable being 138La, with a half-life of 1.02×1011 years; 137La, with a half-life of 60,000 years and 140La, with a half-life of 1.6781 days. The remaining radioactive isotopes have half-lives that are less than a day and the majority of these have half-lives that are less than 1 minute. This element also has 12 nuclear isomers, the longest-lived of which is 132mLa, with a half-life of 24.3 minutes. Lighter isotopes mostly decay to isotopes of barium and heavy ones mostly decay to isotopes of cerium. 138La can decay to both.
Naturally occurring barium (56Ba) is a mix of six stable isotopes and one very long-lived radioactive primordial isotope, barium-130, identified as being unstable by geochemical means (from analysis of the presence of its daughter xenon-130 in rocks) in 2001. This nuclide decays by double electron capture (absorbing two electrons and emitting two neutrinos), with a half-life of (0.5–2.7)×1021 years (about 1011 times the age of the universe).
Tin (50Sn) is the element with the greatest number of stable isotopes. This is probably related to the fact that 50 is a "magic number" of protons. In addition, twenty-nine unstable tin isotopes are known, including tin-100 (100Sn) and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.
Indium (49In) consists of two primordial nuclides, with the most common (~ 95.7%) nuclide (115In) being measurably though weakly radioactive. Its spin-forbidden decay has a half-life of 4.41×1014 years, much longer than the currently accepted age of the Universe.
Natural palladium (46Pd) is composed of six stable isotopes, 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, although 102Pd and 110Pd are theoretically unstable. The most stable radioisotopes are 107Pd with a half-life of 6.5 million years, 103Pd with a half-life of 17 days, and 100Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u (91Pd) to 128.96 u (129Pd). Most of these have half-lives that are less than 30 minutes except 101Pd, 109Pd, and 112Pd.
The alkaline earth metal strontium (38Sr) has four stable, naturally occurring isotopes: 84Sr (0.56%), 86Sr (9.86%), 87Sr (7.0%) and 88Sr (82.58%). Its standard atomic weight is 87.62(1).
Selenium (34Se) has six natural isotopes that occur in significant quantities, along with the trace isotope 79Se, which occurs in minute quantities in uranium ores. Five of these isotopes are stable: 74Se, 76Se, 77Se, 78Se, and 80Se. The last three also occur as fission products, along with 79Se, which has a half-life of 327,000 years, and 82Se, which has a very long half-life (~1020 years, decaying via double beta decay to 82Kr) and for practical purposes can be considered to be stable. There are 23 other unstable isotopes that have been characterized, the longest-lived being 79Se with a half-life 327,000 years, 75Se with a half-life of 120 days, and 72Se with a half-life of 8.40 days. Of the other isotopes, 73Se has the longest half-life, 7.15 hours; most others have half-lives not exceeding 38 seconds.
Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 28 radioisotopes. The most stable radioisotope is 67Cu with a half-life of 61.83 hours. Most of the others have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β+ decay, while isotopes with atomic masses above 65 tend to undergo β− decay. 64Cu decays by both β+ and β−.
Naturally occurring chromium (24Cr) is composed of four stable isotopes; 50Cr, 52Cr, 53Cr, and 54Cr with 52Cr being the most abundant (83.789% natural abundance). 50Cr is suspected of decaying by β+β+ to 50Ti with a half-life of (more than) 1.8×1017 years. Twenty-two radioisotopes, all of which are entirely synthetic, have been characterized, the most stable being 51Cr with a half-life of 27.7 days. All of the remaining radioactive isotopes have half-lives that are less than 24 hours and the majority of these have half-lives that are less than 1 minute. This element also has two meta states, 45mCr, the more stable one, and 59mCr, the least stable isotope or isomer.