Isotopes of thulium

Last updated

Isotopes of thulium  (69Tm)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
167Tm synth 9.25 d ε 167Er
168Tmsynth93.1 d β+ 168Er
169Tm100% stable
170Tm synth128.6 d β 170Yb
171Tmsynth1.92 yβ 171Yb
Standard atomic weight Ar°(Tm)

Naturally occurring thulium (69Tm) is composed of one stable isotope, 169Tm (100% natural abundance). Thirty-nine radioisotopes have been characterized, with the most stable being 171Tm with a half-life of 1.92 years, 170Tm with a half-life of 128.6 days, 168Tm with a half-life of 93.1 days, and 167Tm with a half-life of 9.25 days. All of the remaining radioactive isotopes have half-lives that are less than 64 hours, and the majority of these have half-lives that are less than 2 minutes. This element also has 26 meta states, with the most stable being 164mTm (t1/2 5.1 minutes), 160mTm (t1/2 74.5 seconds) and 155mTm (t1/2 45 seconds).

Contents

The known isotopes of thulium range from 144Tm to 183Tm. The primary decay mode before the most abundant stable isotope, 169Tm, is electron capture, and the primary mode after is beta emission. The primary decay products before 169Tm are erbium isotopes, and the primary products after are ytterbium isotopes. All isotopes of thulium are either radioactive or, in the case of 169Tm, observationally stable, meaning that 169Tm is predicted to be radioactive but no actual decay has been observed.

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [4]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity [1]
[n 7] [n 4]
Isotopic
abundance
Excitation energy [n 4]
144Tm6975143.97621(43)#2.3(9) μs p 143Er(10+)
145Tm6976144.97039(21)#3.17(20) μsp144Er(11/2−)
146Tm6977145.96666(22)#155(20) msp145Er(1+)
146m1Tm304(6) keV73(7) msp145Er(5−)
146m2Tm437(7) keV200(3) msp145Er(10+)
147Tm6978146.9613799(73)0.58(3) s β+ (85%)147Er11/2−
p (15%)146Er
147mTm62(5) keV360(40) μsp146Er3/2+
148Tm6979147.958384(11)0.7(2) sβ+148Er(10+)
149Tm6980148.95283(22)#0.9(2) sβ+ (99.74%)149Er11/2−
β+, p (0.26%)148Ho
150Tm6981149.95009(21)#3# sβ+150Er(1+)
150m1Tm [n 8] 140(140)# keV2.20(6) sβ+ (98.9%)150Er(6−)
β+, p (1.1%)149Ho
150m2Tm811(140)# keV5.2(3) ms IT 150m1Tm10+#
151Tm6982150.945494(21)4.17(11) sβ+151Er(11/2−)
151m1Tm93(6) keV6.6(20) sβ+151Er(1/2+)
151m2Tm2655.67(22) keV451(34) nsIT151Tm(27/2−)
152Tm6983151.944476(58)8.0(10) sβ+152Er(2)−
152m1Tm [n 8] −100(250) keV5.2(6) sβ+152Er(9)+
152m2Tm2455(250) keV301(7) nsIT152Tm(17+)
153Tm6984152.942058(13)1.48(1) s α (91%)149Ho(11/2−)
β+ (9%)153Er
153mTm43.2(2) keV2.5(2) sα (92%)149Ho(1/2+)
β+ (8%)153Er
154Tm6985153.941570(15)8.1(3) sβ+ (54%)154Er(2)−
α (46%)150Ho
154mTm [n 8] 70(50) keV3.30(7) sα (58%)150Ho(9)+
β+ (42%)154Er
155Tm6986154.939210(11)21.6(2) sβ+ (99.17%)155Er11/2−
α (0.83%)151Ho
155mTm41(6) keV45(4) sβ+155Er1/2+
156Tm6987155.938986(15)83.8(18) sβ+ (99.94%)156Er2−
α (0.064%)152Ho
156mTm400(200)# keV~400 nsIT156Tm(11−)
157Tm6988156.936973(30)3.63(9) minβ+157Er1/2+
α (7.5×10−4%)153Er
157mTm [n 8] 100(50)# keV1.6 s7/2−#
158Tm6989157.936980(27)3.98(6) minβ+158Er2−
158mTm [n 8] 100(50)# keV~20 s5−#
159Tm6990158.934975(30)9.13(16) minβ+159Er5/2+
160Tm6991159.935264(35)9.4(3) minβ+160Er1−
160m1Tm67(14) keV74.5(15) sIT (85%)160Tm(5+)
β+ (15%)160Er
160m2Tm215(52)# keV~200 nsIT160Tm(8)
161Tm6992160.933549(30)30.2(8) minβ+161Er7/2+
161m1Tm7.51(24) keV5# min(1/2+)
161m2Tm78.20(3) keV110(3) nsIT161Tm7/2−
162Tm6993161.934001(28)21.70(19) minβ+162Er1−
162mTm130(40) keV24.3(17) sIT (81%)162Tm5+
β+ (19%)162Er
163Tm6994162.9326583(59)1.810(5) hβ+163Er1/2+
163mTm86.92(5) keV380(30) nsIT163Tm(7/2)−
164Tm6995163.933538(27)2.0(1) min EC (61%)164Er1+
β+ (39%)
164mTm20(12) keV5.1(1) minIT (~80%)164Tm6−
β+ (~20%)164Er
165Tm6996164.9324418(18)30.06(3) hβ+165Er1/2+
165m1Tm80.37(6) keV80(3) μsIT165Tm7/2+
165m2Tm160.47(6) keV9.0(5) μsIT165Tm7/2−
166Tm6997165.933562(12)7.70(3) hβ+166Er2+
166m1Tm122(7) keV348(21) msIT166Tm(6−)
166m2Tm244(7) keV2(1) μsIT166Tm(6−)
167Tm6998166.9328572(14)9.25(2) dEC167Er1/2+
167m1Tm179.480(19) keV1.16(6) μsIT167Tm7/2+
167m2Tm292.820(20) keV0.9(1) μsIT167Tm7/2−
168Tm6999167.9341785(18)93.1(2) dβ+ (99.99%)168Er3+
β (0.010%)168Yb
169Tm69100168.93421896(79) Observationally Stable [n 9] 1/2+1.0000
169mTm316.1463(1) keV659.9(23) nsIT169Tm7/2+
170Tm 69101169.93580709(79)128.6(3) dβ (99.87%)170Yb1−
EC (0.131%)170Er
170mTm183.197(4) keV4.12(13) μsIT170Tm3+
171Tm69102170.9364352(10)1.92(1) yβ171Yb1/2+
171m1Tm424.9557(15) keV2.60(2) μsIT171Tm7/2−
171m2Tm1674.43(13) keV1.7(2) μsIT171Tm19/2+
172Tm69103171.9384070(59)63.6(3) hβ172Yb2−
172mTm476.2(2) keV132(7) μsIT172Tm(6+)
173Tm69104172.9396066(47)8.24(8) hβ173Yb(1/2+)
173m1Tm317.73(20) keV10.7(17) μsIT173Tm7/2−
173m2Tm1905.7(4) keV250(69) nsIT173Tm19/2−
173m3Tm4047.9(5) keV121(28) nsIT173Tm35/2−
174Tm69105173.942174(48)5.4(1) minβ174Yb4−
174m1Tm252.4(7) keV2.29(1) sIT (>98.5%)174Tm0+
β (<1.5%)174Yb
174m2Tm2091.7(3) keV106(7) μsIT174Tm14−
175Tm69106174.943842(54)15.2(5) minβ175Yb(1/2)+
175m1Tm440.0(11) keV319(35) nsIT175Tm7/2−
175m2Tm1517.7(12) keV21(14) μsIT175Tm23/2+
176Tm69107175.94700(11)1.85(3) minβ176Yb(4+)
177Tm69108176.94893(22)#95(7) sβ177Yb1/2+#
177mTm [n 8] 100(100)# keV77(11) sβ177Yb7/2−#
178Tm69109177.95251(32)#10# s
[>300 ns]
1−#
179Tm69110178.95502(43)#18# s
[>300 ns]
1/2+#
180Tm69111179.95902(43)#3# s
[>300 ns]
181Tm69112180.96195(54)#7# s
[>300 ns]
1/2+#
182Tm [5] 69113181.96619(54)#
183Tm [5] 69114
This table header & footer:
  1. mTm  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    p: Proton emission
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. 1 2 3 4 5 6 Order of ground state and isomer is uncertain.
  9. Believed to undergo α decay to 165Ho

Thulium-170

Thulium-170 has a half-life of 128.6 days, decaying by β decay about 99.87% of the time and electron capture the remaining 0.13% of the time. [1] Due to its low-energy X-ray emissions, it has been proposed for radiotherapy [6] and as a source in a radiothermal generator. [7]

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Thulium". CIAAW. 2021.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. 1 2 Tarasov, O. B.; Gade, A.; Fukushima, K.; et al. (2024). "Observation of New Isotopes in the Fragmentation of 198Pt at FRIB". Physical Review Letters. 132 (072501). doi:10.1103/PhysRevLett.132.072501.
  6. Polyak, Andras; Das, Tapas; Chakraborty, Sudipta; Kiraly, Reka; Dabasi, Gabriella; Joba, Robert Peter; Jakab, Csaba; Thuroczy, Julianna; Postenyi, Zita; Haasz, Veronika; Janoki, Gergely; Janoki, Gyozo A.; Pillai, Maroor R.A.; Balogh, Lajos (October 2014). "Thulium-170-Labeled Microparticles for Local Radiotherapy: Preliminary Studies". Cancer Biotherapy and Radiopharmaceuticals. 29 (8): 330–338. doi:10.1089/cbr.2014.1680. ISSN   1084-9785. PMID   25226213 via Academia.edu.
  7. Dustin, J. Seth; Borrelli, R.A. (December 2021). "Assessment of alternative radionuclides for use in a radioisotope thermoelectric generator". Nuclear Engineering and Design. 385: 111475. doi: 10.1016/j.nucengdes.2021.111475 .