Isotopes of bromine

Last updated

Isotopes of bromine  (35Br)
Main isotopes [1] Decay
Isotope abun­dance half-life (t1/2) mode pro­duct
75Br synth 97 min β+ 75Se
76Br synth16.2 hβ+ 76Se
77Br synth57.04 hβ+ 77Se
79Br 50.6% stable
80Br synth17.68 min β 80Kr
β+ 80Se
80mBr synth4.4205 h IT 80Br
81Br 49.4%stable
82Br synth35.282 hβ 82Kr
Standard atomic weight Ar°(Br)

Bromine (35Br) has two stable isotopes, 79Br and 81Br, with nearly equal natural abundance, and 32 known artificial radioisotopes from 68Br to 101Br, the most stable of which is 77Br, with a half-life of 57.04 hours. This is followed by 82Br at 35.282 hours and 76Br at 16.2 hours; the most stable isomer is 80mBr with the half-life of 4.4205 hours.

Contents

Like the radioactive isotopes of iodine, radioisotopes of bromine, collectively radiobromine, can be used to label biomolecules for nuclear medicine; for example, the positron emitters 75Br and 76Br can be used for positron emission tomography. [4] [5] Radiobromine has the advantage that organobromides are more stable than analogous organoiodides, and that it is not uptaken by the thyroid like iodine. [6]

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [7]
[n 2] [n 3]
Half-life [1]
Decay
mode
[1]
[n 4]
Daughter
isotope

[n 5] [n 6]
Spin and
parity [1]
[n 7] [n 8]
Natural abundance (mole fraction)
Excitation energyNormal proportion [1] Range of variation
67Br3532
68Br [8] 353367.95836(28)#~35 nsp?67Se3+#
69Br353468.950338(45)<19 ns [8] p68Se(5/2−)
70Br353569.944792(16)78.8(3) ms β+ 70Se0+
β+, p?69As
70mBr2292.3(8) keV2.16(5) sβ+70Se9+
β+, p?69As
71Br353670.9393422(58)21.4(6) sβ+71Se(5/2)−
72Br353771.9365946(11)78.6(24) sβ+72Se1+
72mBr100.76(15) keV10.6(3) sIT72Br(3−)
β+?72Se
73Br353872.9316734(72)3.4(2) minβ+73Se1/2−
74Br353973.9299103(63)25.4(3) minβ+74Se(0−)
74mBr13.58(21) keV46(2) minβ+74Se4+
75Br354074.9258106(46)96.7(13) minβ+ (76%) [6] 75Se3/2−
EC (24%)75Se
76Br354175.924542(10)16.2(2) hβ+ (57%) [6] 76Se1−
EC (43%)76Se
76mBr102.58(3) keV1.31(2) sIT (>99.4%)76Br(4)+
β+ (<0.6%)76Se
77Br354276.9213792(30)57.04(12) hEC (99.3%) [9] 77Se3/2−
β+ (0.7%)77Se
77mBr105.86(8) keV4.28(10) minIT77Br9/2+
78Br354377.9211459(38)6.45(4) minβ+ (>99.99%)78Se1+
β (<0.01%)78Kr
78mBr180.89(13) keV119.4(10) μsIT78Br(4+)
79Br354478.9183376(11)Stable3/2−0.5065(9)
79mBr207.61(9) keV4.85(4) sIT79Br9/2+
80Br354579.9185298(11)17.68(2) minβ (91.7%)80Kr1+
β+ (8.3%)80Se
80mBr85.843(4) keV4.4205(8) hIT80Br5−
81Br [n 9] 354680.9162882(10)Stable3/2−0.4935(9)
81mBr536.20(9) keV34.6(28) μsIT81Br9/2+
82Br354781.9168018(10)35.282(7) hβ82Kr5−
82mBr45.9492(10) keV6.13(5) minIT (97.6%)82Br2−
β (2.4%)82Kr
83Br354882.9151753(41)2.374(4) hβ83Kr3/2−
83mBr3069.2(4) keV729(77) nsIT83Br(19/2−)
84Br354983.9165136(17) [10] 31.76(8) minβ84Kr2−
84m1Br193.6(15) keV [10] 6.0(2) minβ84Kr(6)−
84m2Br408.2(4) keV<140 nsIT84Br1+
85Br355084.9156458(33)2.90(6) minβ85m1Kr [11] 3/2−
86Br355185.9188054(33)55.1(4) sβ86Kr(1−)
87Br355286.9206740(34)55.68(12) sβ (97.40%)87Kr5/2−
β, n (2.60%)86Kr
88Br355387.9240833(34)16.34(8) sβ (93.42%)88Kr(1−)
β, n (6.58%)87Kr
88mBr270.17(11) keV5.51(4) μsIT88Br(4−)
89Br355488.9267046(35)4.357(22) sβ (86.2%)89Kr(3/2−, 5/2−)
β, n (13.8%)88Kr
90Br355589.9312928(36)1.910(10) sβ (74.7%)90Kr
β, n (25.3%)89Kr
91Br355690.9343986(38)543(4) msβ (70.5%)91Kr5/2−#
β, n (29.5%)90Kr
92Br355791.9396316(72)314(16) msβ (66.9%)92Kr(2−)
β, n (33.1%)91Kr
β, 2n?90Kr
92m1Br662(1) keV88(8) nsIT92Br
92m2Br1138(1) keV85(10) nsIT92Br
93Br355892.94322(46)152(8) msβ, n (64%)92Kr5/2−#
β (36%)93Kr
β, 2n?91Kr
94Br355993.94885(22)#70(20) msβ, n (68%)93Kr2−#
β (32%)94Kr
β, 2n?92Kr
94mBr294.6(5) keV530(15) nsIT94Br
95Br356094.95293(32)#80# ms [>300 ns]β?95Kr5/2−#
β, n?94Kr
β, 2n?93Kr
95mBr537.9(5) keV6.8(10) μsIT95Br
96Br356195.95898(32)#20# ms [>300 ns]β?96Kr
β, n?95Kr
β, 2n?94Kr
96mBr311.5(5) keV3.0(9) μsIT96Br
97Br356296.96350(43)#40# ms [>300 ns]β?97Kr5/2−#
β, n?96Kr
β, 2n?95Kr
98Br356397.96989(43)#15# ms [>400 ns]β?98Kr
β, n?97Kr
β, 2n?96Kr
99Br [12] 3564
100Br [12] 3565
101Br [13] 3566
This table header & footer:
  1. mBr  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  5. Bold italics symbol as daughter  Daughter product is nearly stable.
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. Fission product

Bromine-75

Bromine-75 has a half-life of 97 minutes. [14] This isotope undergoes positron emission rather than electron capture about 76% of the time, [6] so it was used for diagnosis and positron emission tomography (PET) in the 1980s. [4] However, its decay product, selenium-75, produces secondary radioactivity with a longer half-life of around 120 days. [6] [4]

Bromine-76

Bromine-76 has a half-life of 16.2 hours. [14] While its decay is more energetic than 75Br and has a lower yield of positrons, about 57% of decays, [6] bromine-76 has been preferred in PET applications since the 1980s because of its longer half-life and easier synthesis, and because its decay product, 76Se, is not radioactive. [5]

Bromine-77

Bromine-77 is the most stable radioisotope of bromine, with a half-life of 57.04 hours. [14] Although β+ decay is possible for this isotope, about 99.3% of decays are by electron capture. [9] Despite its complex emission spectrum, featuring strong gamma-ray emissions at 239, 297, 521, and 579 keV, [15] 77Br was used in SPECT imaging in the 1970s. [16] However, except for longer-term tracing, [6] this is no longer considered practical due to the difficult collimator requirements and the proximity of the 521 keV line to the 511 keV annihilation radiation related to the β+ decay. [16] The Auger electrons emitted during decay are nevertheless well-suited for radiotherapy, and 77Br can possibly be paired with the imaging-suited 76Br (produced as an impurity in common synthesis routes) for this application. [4] [16]

See also

Daughter products other than bromine

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Bromine". CIAAW. 2011.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. 1 2 3 4 Coenen, Heinz H.; Ermert, Johannes (January 2021). "Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18". Nuclear Medicine and Biology. 92: 241–269. doi:10.1016/j.nucmedbio.2020.07.003. PMID   32900582.
  5. 1 2 Welch, Michael J.; McElvany, Karen D. (1 October 1983). "Radionuclides of Bromine for Use in Biomedical Studies". Ract. 34 (1–2): 41–46. doi:10.1524/ract.1983.34.12.41.
  6. 1 2 3 4 5 6 7 Lambert, F.; Slegers, G.; Hermanne, α.; Mertens, J. (1 June 1994). "Production and Purification of 77 Br Suitable for Labeling Monoclonal Antibodies Used in Tumor Imaging". Ract. 65 (4): 223–226. doi:10.1524/ract.1994.65.4.223.
  7. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  8. 1 2 Wimmer, K.; et al. (2019). "Discovery of 68Br in secondary reactions of radioactive beams". Physics Letters B. 795: 266–270. arXiv: 1906.04067 . Bibcode:2019PhLB..795..266W. doi:10.1016/j.physletb.2019.06.014. S2CID   182953245.
  9. 1 2 Kassis, A. I.; Adelstein, S. J.; Haydock, C.; Sastry, K. S. R.; McElvany, K. D.; Welch, M. J. (May 1982). "Lethality of Auger Electrons from the Decay of Bromine-77 in the DNA of Mammalian Cells" (PDF). Radiation Research. 90 (2): 362. Bibcode:1982RadR...90..362K. doi:10.2307/3575714. ISSN   0033-7587. JSTOR   3575714.
  10. 1 2 Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv: 2403.04710 .
  11. ENSDF analysis available at National Nuclear Data Center. "NuDat 3.0 database". Brookhaven National Laboratory.
  12. 1 2 Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4): 044313. doi:10.1103/PhysRevC.109.044313.
  13. Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl: 10261/260248 . S2CID   234019083.
  14. 1 2 3 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  15. Singh, Balraj; Nica, Ninel (May 2012). "Nuclear Data Sheets for A = 77". Nuclear Data Sheets. 113 (5): 1115–1314. Bibcode:2012NDS...113.1115S. doi:10.1016/j.nds.2012.05.001.
  16. 1 2 3 Amjed, N.; Kaleem, N.; Wajid, A.M.; Naz, A.; Ahmad, I. (January 2024). "Evaluation of the cross section data for the low and medium energy cyclotron production of 77Br radionuclide". Radiation Physics and Chemistry. 214: 111286. doi:10.1016/j.radphyschem.2023.111286.