National Nuclear Data Center

Last updated

The National Nuclear Data Center is an organization based in the Brookhaven National Laboratory that acts as a repository for data regarding nuclear chemistry, [1] such as nuclear structure, decay, and reaction data, as well as historical information regarding previous experiments and literature. According to the ResearchGATE scientific network, "The National Nuclear Data Center NNDC collects, evaluates, and disseminates nuclear physics data for basic nuclear research and applied nuclear technologies." [2] The current Center Head is Dr. David Brown. [3]

Contents

History

The predecessor group to the NNDC was founded in 1951 when a group known as the Brookhaven Neutron Cross Section Compilation Group was formed at the Brookhaven National Laboratory. In 1955 this group published the reference book "BNL-325," which had to do with the cross-sections of neutrons. After being renamed the Sigma Center, the group was moved to the Reactor Physics Division of the Nuclear Engineering Department in the Brookhaven Lab in 1960. At around that time, the Cross Section Evaluation Group was formed in the same division, and the two groups worked closely together and shared support personnel. In 1964, nuclear theorist Dr. Charles Porter, head of the Cross Section Evaluation Group, died, and Dr. John Stehn, head of the Sigma Center, ended up becoming the acting head of both the Sigma Center and the Group. [4] [5]

1967 saw the two groups merge into the National Neutron Cross Section Center (NNCSC), with Dr. Sol Pearlstein as acting director, officially being appointed Director of the NNCSC in 1968. In 1977, the Center was given the additional responsibility for nuclear structure and decay data by the Energy Research and Development Administration (ERDA), the predecessor of the Department of Energy, and its name was then changed to the National Nuclear Data Center. [6] Dr. Charles Dunford served as Center Head from 1992 to 2002, with the exception of a two-year leave of absence (1993-1995) when he served as Section Head for the International Atomic Energy Agency (IAEA) Nuclear Data Section. During his leave of absence Mulki Bhat was named Acting Center Head. [7] Since then, the head has been succeeded by Dr. Pavel Oblozinskiy, Dr. Michal Herman [8] and then Dr. Alejandro Sonzogni and presently Dr. David Brown.

Present activities

The NNDC carries out its original mission of nuclear physics and nuclear chemistry data storage, evaluation and dissemination to this day. This data is to be used "for basic nuclear research, applied nuclear technologies including energy, shielding, medical and homeland security." In 2004, the NNDC began a modernization program which consisted of digitization of data and offering new web services. [9] As part of the program, the Center has upgraded to Linux-based data storage and computing platforms, as well as implementing the additional use of Java and Sybase relational database software. [8]

Related Research Articles

<span class="mw-page-title-main">Brookhaven National Laboratory</span> United States Department of Energy national laboratory

Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island a hamlet of the Town of Brookhaven. It was formally established in 1947 at the site of Camp Upton, a former U.S. Army base. Located approximately 60 miles east of New York City, it is managed by Stony Brook University and Battelle Memorial Institute.

<span class="mw-page-title-main">Control rod</span> Device used to regulate the power of a nuclear reactor

Control rods are used in nuclear reactors to control the rate of fission of the nuclear fuel – uranium or plutonium. Their compositions include chemical elements such as boron, cadmium, silver, hafnium, or indium, that are capable of absorbing many neutrons without themselves decaying. These elements have different neutron capture cross sections for neutrons of various energies. Boiling water reactors (BWR), pressurized water reactors (PWR), and heavy-water reactors (HWR) operate with thermal neutrons, while breeder reactors operate with fast neutrons. Each reactor design can use different control rod materials based on the energy spectrum of its neutrons. Control rods have been used in nuclear aircraft engines like Project Pluto as a method of control.

<span class="mw-page-title-main">High-energy nuclear physics</span> Intersection of nuclear physics and high-energy physics

High-energy nuclear physics studies the behavior of nuclear matter in energy regimes typical of high-energy physics. The primary focus of this field is the study of heavy-ion collisions, as compared to lighter atoms in other particle accelerators. At sufficient collision energies, these types of collisions are theorized to produce the quark–gluon plasma. In peripheral nuclear collisions at high energies one expects to obtain information on the electromagnetic production of leptons and mesons that are not accessible in electron–positron colliders due to their much smaller luminosities.

<span class="mw-page-title-main">Neutron cross section</span> Measure of neutron interaction likelihood

In nuclear physics, the concept of a neutron cross section is used to express the likelihood of interaction between an incident neutron and a target nucleus. The neutron cross section σ can be defined as the area in cm2 for which the number of neutron-nuclei reactions taking place is equal to the product of the number of incident neutrons that would pass through the area and the number of target nuclei. In conjunction with the neutron flux, it enables the calculation of the reaction rate, for example to derive the thermal power of a nuclear power plant. The standard unit for measuring the cross section is the barn, which is equal to 10−28 m2 or 10−24 cm2. The larger the neutron cross section, the more likely a neutron will react with the nucleus.

Uranium (92U) is a naturally occurring radioactive element that has no stable isotope. It has two primordial isotopes, uranium-238 and uranium-235, that have long half-lives and are found in appreciable quantity in the Earth's crust. The decay product uranium-234 is also found. Other isotopes such as uranium-233 have been produced in breeder reactors. In addition to isotopes found in nature or nuclear reactors, many isotopes with far shorter half-lives have been produced, ranging from 214U to 242U. The standard atomic weight of natural uranium is 238.02891(3).

Caesium (55Cs) has 41 known isotopes, the atomic masses of these isotopes range from 112 to 152. Only one isotope, 133Cs, is stable. The longest-lived radioisotopes are 135Cs with a half-life of 1.33 million years, 137
Cs
with a half-life of 30.1671 years and 134Cs with a half-life of 2.0652 years. All other isotopes have half-lives less than 2 weeks, most under an hour.

Naturally occurring zirconium (40Zr) is composed of four stable isotopes (of which one may in the future be found radioactive), and one very long-lived radioisotope (96Zr), a primordial nuclide that decays via double beta decay with an observed half-life of 2.0×1019 years; it can also undergo single beta decay, which is not yet observed, but the theoretically predicted value of t1/2 is 2.4×1020 years. The second most stable radioisotope is 93Zr, which has a half-life of 1.53 million years. Thirty other radioisotopes have been observed. All have half-lives less than a day except for 95Zr (64.02 days), 88Zr (83.4 days), and 89Zr (78.41 hours). The primary decay mode is electron capture for isotopes lighter than 92Zr, and the primary mode for heavier isotopes is beta decay.

Plutonium (94Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long before being found in nature, the first isotope synthesized being plutonium-238 in 1940. Twenty plutonium radioisotopes have been characterized. The most stable are plutonium-244 with a half-life of 80.8 million years; plutonium-242 with a half-life of 373,300 years; and plutonium-239 with a half-life of 24,110 years; and plutonium-240 with a half-life of 6,560 years. This element also has eight meta states; all have half-lives of less than one second.

Californium (98Cf) is an artificial element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 245Cf in 1950. There are 20 known radioisotopes ranging from 237Cf to 256Cf and one nuclear isomer, 249mCf. The longest-lived isotope is 251Cf with a half-life of 898 years.

Meitnerium (109Mt) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 266Mt in 1982, and this is also the only isotope directly synthesized; all other isotopes are only known as decay products of heavier elements. There are eight known isotopes, from 266Mt to 278Mt. There may also be two isomers. The longest-lived of the known isotopes is 278Mt with a half-life of 8 seconds. The unconfirmed heavier 282Mt appears to have an even longer half-life of 67 seconds.

Roentgenium (111Rg) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 272Rg in 1994, which is also the only directly synthesized isotope; all others are decay products of heavier elements. There are seven known radioisotopes, having mass numbers of 272, 274, and 278–282. The longest-lived isotope is 282Rg with a half-life of about 2 minutes, although the unconfirmed 283Rg and 286Rg may have longer half-lives of about 5.1 minutes and 10.7 minutes respectively.

Nihonium (113Nh) is a synthetic element. Being synthetic, a standard atomic weight cannot be given and like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was 284Nh as a decay product of 288Mc in 2003. The first isotope to be directly synthesized was 278Nh in 2004. There are 6 known radioisotopes from 278Nh to 286Nh, along with the unconfirmed 287Nh and 290Nh. The longest-lived isotope is 286Nh with a half-life of 9.5 seconds.

Moscovium (115Mc) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no known stable isotopes. The first isotope to be synthesized was 288Mc in 2004. There are five known radioisotopes from 286Mc to 290Mc. The longest-lived isotope is 290Mc with a half-life of 0.65 seconds.

Nuclear data represents measured probabilities of various physical interactions involving the nuclei of atoms. It is used to understand the nature of such interactions by providing the fundamental input to many models and simulations, such as fission and fusion reactor calculations, shielding and radiation protection calculations, criticality safety, nuclear weapons, nuclear physics research, medical radiotherapy, radioisotope therapy and diagnostics, particle accelerator design and operations, geological and environmental work, radioactive waste disposal calculations, and space travel calculations.

Iodine-129 (129I) is a long-lived radioisotope of iodine that occurs naturally but is also of special interest in the monitoring and effects of man-made nuclear fission products, where it serves as both a tracer and a potential radiological contaminant.

An activation product is a material that has been made radioactive by the process of neutron activation.

G. Norris Glasoe was an American nuclear physicist. He was a member of the Columbia University team which was the first in the United States to verify the European discovery of the nuclear fission of uranium via neutron bombardment. During World War II, he worked at the MIT Radiation Laboratory. He was a physicist and administrator at the Brookhaven National Laboratory.

Frederick P. Cowan was an American health physicist and head of the Instrumentation and Health Physics Department at Brookhaven National Laboratory.

<span class="mw-page-title-main">Boris Pritychenko</span>

Boris Pritychenko is a Russian–American nuclear physicist. He compiles experimental data, works on nuclear databases, and serves as editor-in-chief of the journal Atomic Data and Nuclear Data Tables.

Brookhaven Graphite Research Reactor (BGRR) was a research reactor located at Brookhaven National Laboratory, a United States Department of Energy national laboratory located in Upton, New York, on Long Island, approximately 60 miles east of New York City. The BGRR operated from 1950 until 1968 and has been fully decommissioned.

References

  1. "National Nuclear Data Center". August 2005.
  2. "A to A∞-bimodules and Serre A∞-func... | ResearchGate". Archived from the original on 2013-02-22. Retrieved 2017-10-30.
  3. "About the NNDC".
  4. Sol Pearlstein (Image). Archived from the original on 2008-10-12. Retrieved 2011-01-18.
  5. Two Cross Section Info Groups Merge (Image).
  6. Name Changes -- Data Expands (Image).
  7. "The Bulletin Vol. 60 - No. 36 October 20, 2006" (PDF). www.nndc.bnl.gov. Archived from the original (PDF) on 2007-07-13. Retrieved 2023-11-04.
  8. 1 2 Pritychenko, B.; Sonzogni, A.A.; Winchell, D.F.; Zerkin, V.V.; Arcilla, R.; Burrows, T.W.; Dunford, C.L.; Herman, M.W.; McLane, V.; Obložinský, P.; Sanborn, Y.; Tuli, J.K. (2006). "Nuclear reaction and structure data services of the National Nuclear Data Center" . Annals of Nuclear Energy. 33 (4): 390–399. Bibcode:2006AnNuE..33..390P. doi:10.1016/j.anucene.2005.10.004.
  9. Pritychenko, B.; Arcilla, R.; Burrows, T. W.; Dunford, C. L.; Herman, M. W.; McLane, V.; Obložinský, P.; Sonzogni, A. A.; Tuli, J. K.; Winchell, D. F. (2005). "NNDC Stand: Activities and Services of the National Nuclear Data Center". AIP Conference Proceedings. International Conference on Nuclear Data for Science and Technology. Vol. 769. p. 132. Bibcode:2005AIPC..769..132P. doi:10.1063/1.1944974.