Isotopes of protactinium

Last updated

Isotopes of protactinium  (91Pa)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
229Pa synth 1.5 d ε 229Th
230Pasynth17.4 d β+ 230Th
β 230U
α 226Ac
231Pa100%3.265×104 yα 227Ac
232Pasynth1.32 dβ 232U
233Pa trace 26.975 dβ 233U
234Patrace6.70 hβ 234U
234mPatrace1.159 minβ234U
Standard atomic weight Ar°(Pa)

Protactinium (91Pa) has no stable isotopes. The four naturally occurring isotopes allow a standard atomic weight to be given.

Contents

Thirty radioisotopes of protactinium have been characterized, ranging from 210Pa to 239Pa. The most stable isotope is 231Pa with a half-life of 32,760 years, 233Pa with a half-life of 26.967 days, and 230Pa with a half-life of 17.4 days. All of the remaining radioactive isotopes have half-lives less than 1.6 days, and the majority of these have half-lives less than 1.8 seconds. This element also has five meta states, 217mPa (t1/2 1.15 milliseconds), 220m1Pa (t1/2 = 308 nanoseconds), 220m2Pa (t1/2 = 69 nanoseconds), 229mPa (t1/2 = 420 nanoseconds), and 234mPa (t1/2 = 1.17 minutes).

The only naturally occurring isotopes are 231Pa, 234Pa and 234mPa. The former occurs as an intermediate decay product of 235U, while the latter two occur as intermediate decay products of 238U. 231Pa makes up nearly all natural protactinium.

The primary decay mode for isotopes of Pa lighter than (and including) the most stable isotope 231Pa is alpha decay, except for 228Pa to 230Pa, which primarily decay by electron capture to isotopes of thorium. The primary mode for the heavier isotopes is beta minus (β) decay. The primary decay products of 231Pa and isotopes of protactinium lighter than and including 227Pa are isotopes of actinium and the primary decay products for the heavier isotopes of protactinium are isotopes of uranium.

List of isotopes


Nuclide
[n 1]
Historic
name
Z N Isotopic mass (Da) [4]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity [1]
[n 7] [n 4]
Isotopic
abundance
Excitation energy
210Pa [5] 911196.0+1.5
−1.1
 ms
α 206Ac3+
211Pa91120211.023674(75)6(3) msα207Ac9/2−
212Pa91121212.023185(94)5.8(19) msα208Ac3+#
213Pa91122213.021100(61)7.4(24) msα209Ac9/2−
214Pa91123214.020891(87)17(3) msα210Ac7+#
215Pa91124215.019114(89)14(2) msα211Ac9/2−
216Pa91125216.019135(26)105(12) msα212Ac5+#
217Pa91126217.018309(13)3.8(2) msα213Ac9/2−
217mPa1860(7) keV1.08(3) msα (73%)213Ac(23/2−)
IT (27%)217Pa
218Pa91127218.020021(19)108(5) μsα214Ac8−#
218mPa81(19) keV150(50) μsα214Ac
219Pa91128219.019950(75)56(9) nsα215Ac9/2−
220Pa91129220.021770(16)850(60) nsα216Ac1−#
220m1Pa [n 8] 26(23) keV410(180) nsα216Ac
220m2Pa290(50) keV260(210) nsα216Ac
221Pa91130221.021873(64)5.9(17) μsα217Ac9/2−
222Pa91131222.023687(93)3.8(2) msα218Ac1−#
223Pa91132223.023980(81)5.3(3) msα219Ac9/2−
224Pa91133224.0256173(81)844(19) msα (99.9%)220Ac(5−)
225Pa91134225.026148(88)1.71(10) sα221Ac5/2−#
226Pa91135226.027948(12)1.8(2) minα (74%)222Ac1−#
β+ (26%)226Th
227Pa91136227.0288036(78)38.3(3) minα (85%)223Ac(5/2−)
EC (15%)227Th
228Pa91137228.0310508(47)22(1) hβ+ (98.15%)228Th3+
α (1.85%)224Ac
229Pa91138229.0320956(35)1.55(4) dEC (99.51%)229Th5/2+
α (0.49%)225Ac
229mPa12.20(4) keV420(30) nsIT229Pa3/2−
230Pa91139230.0345397(33)17.4(5) dβ+ (92.2%)230Th2−
β (7.8%)230U
α (0.0032%)226Ac
231PaProtoactinium91140231.0358825(19)3.265(20)×104 yα227Ac3/2−1.0000 [n 9]
CD (1.34×10−9%)207Tl
24Ne
SF (<3×10−10%)(various)
CD (~10−12%) [6] 208Pb
23F
232Pa91141232.0385902(82)1.32(2) dβ232U(2−)
233Pa91142233.0402465(14)26.975(13) dβ233U3/2−Trace [n 10]
234PaUranium Z91143234.0433056(44)6.70(5) hβ234U4+Trace [n 11]
234mPaUranium X2
Brevium
79(3) keV1.159(11) minβ (99.84%)234U(0−)Trace [n 11]
IT (0.16%)234Pa
235Pa91144235.045399(15)24.4(2) minβ235U3/2−
236Pa91145236.048668(15)9.1(1) minβ236U1(−)
β, SF (6×10−8%)(various)
237Pa91146237.051023(14)8.7(2) minβ237U1/2+
238Pa91147238.054637(17)2.28(9) minβ238U3−#
β, SF (2.6×10−6%)(various)
239Pa91148239.05726(21)#1.8(5) hβ239U1/2+#
This table header & footer:
  1. mPa  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    CD: Cluster decay
    IT: Isomeric transition
    SF: Spontaneous fission
  6. Bold italics symbol as daughter  Daughter product is nearly stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. Order of ground state and isomer is uncertain.
  9. Intermediate decay product of 235U
  10. Intermediate decay product of 237Np
  11. 1 2 Intermediate decay product of 238U

Actinides and fission products

Protactinium-230

Protactinium-230 has 139 neutrons and a half-life of 17.4 days. Most of the time (92%), it undergoes beta plus decay to 230Th, with a minor (8%) beta-minus decay branch leading to 230U. It also has a very rare (.003%) alpha decay mode leading to 226Ac. [7] It is not found in nature because its half-life is short and it is not found in the decay chains of 235U, 238U, or 232Th. It has a mass of 230.034541 u.

Protactinium-230 is of interest as a progenitor of uranium-230, an isotope that has been considered for use in targeted alpha-particle therapy (TAT). It can be produced through proton or deuteron irradiation of natural thorium. [8]

Protactinium-231

Protactinium-231 is the longest-lived isotope of protactinium, with a half-life of 32,760 years. In nature, it is found in trace amounts as part of the actinium series, which starts with the primordial isotope uranium-235; the equilibrium concentration in uranium ore is 46.55 231Pa per million 235U. In nuclear reactors, it is one of the few long-lived radioactive actinides produced as a byproduct of the projected thorium fuel cycle, as a result of (n,2n) reactions where a fast neutron removes a neutron from 232Th or 232U, and can also be destroyed by neutron capture, though the cross section for this reaction is also low.

A solution of protactinium-231 Pa-231 solution.png
A solution of protactinium-231

binding energy: 1759860 keV
beta decay energy: −382 keV

spin: 3/2−
mode of decay: alpha to 227Ac, also others

possible parent nuclides: beta from 231Th, EC from 231U, alpha from 235Np.

Protactinium-233

Protactinium-233 is also part of the thorium fuel cycle. It is an intermediate beta decay product between thorium-233 (produced from natural thorium-232 by neutron capture) and uranium-233 (the fissile fuel of the thorium cycle). Some thorium-cycle reactor designs try to protect Pa-233 from further neutron capture producing Pa-234 and U-234, which are not useful as fuel.

Protactinium-234

Protactinium-234 is a member of the uranium series with a half-life of 6.70 hours. It was discovered by Otto Hahn in 1921. [9]

Protactinium-234m

Protactinium-234m is a member of the uranium series with a half-life of 1.17 minutes. It was discovered in 1913 by Kazimierz Fajans and Oswald Helmuth Göhring, who named it brevium for its short half-life. [10] It is now believed that all decays of the parent theorium-234 produce this isomer [11] and the ground state is observed because of (invisible) IT decay.

References

  1. 1 2 3 4 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Protactinium". CIAAW. 2017.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. Zhang, M. M.; Wang, J. G.; Ma, L.; Gan, Z. G.; Zhang, Z. Y.; Huang, M. H.; Yang, H. B.; Yang, C. L.; Andreyev, A. N.; Yuan, C. X.; Tian, Y. L.; Wang, Y. S.; Wang, J. Y.; Qiang, Y. H.; Wu, X. L.; Xu, S. Y.; Zhao, Z.; Huang, X. Y.; Li, Z. C.; Zhou, H.; Zhang, X.; Xie, G.; Zhu, L.; Guan, F.; Zheng, J. H.; Sun, L. C.; Li, Y. J.; Yang, H. R.; Duan, L. M.; Lu, Z. W.; Huang, W. X.; Sun, L. T.; He, Y.; Xu, H. S.; Niu, Y. F.; He, X. T.; Ren, Z. Z.; Zhou, S. G. (29 May 2025). "Discovery of the α-emitting isotope 210Pa". Nature Communications. 16 (1): 5003. doi:10.1038/s41467-025-60047-2. ISSN   2041-1723. PMC   12123024 . Retrieved 1 June 2025.
  6. Bonetti, R.; Guglielmetti, A. (2007). "Cluster radioactivity: an overview after twenty years" (PDF). Romanian Reports in Physics. 59: 301–310. Archived from the original (PDF) on 19 September 2016.
  7. Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  8. Mastren, T.; Stein, B.W.; Parker, T.G.; Radchenko, V.; Copping, R.; Owens, A.; Wyant, L.E.; Brugh, M.; Kozimor, S.A.; Noriter, F.M.; Birnbaum, E.R.; John, K.D.; Fassbender, M.E. (2018). "Separation of protactinium employing sulfur-based extraction chromatographic resins". Analytical Chemistry. 90 (11): 7012–7017. doi:10.1021/acs.analchem.8b01380. ISSN   0003-2700. OSTI   1440455. PMID   29757620.
  9. Fry, C., and M. Thoennessen. "Discovery of the Actinium, Thorium, Protactinium, and Uranium Isotopes." January 14, 2012. Accessed May 20, 2018. https://people.nscl.msu.edu/~thoennes/2009/ac-th-pa-u-adndt.pdf.
  10. "Human Health Fact Sheet - Protactinium" (PDF). Argonne National Laboratory (ANL). November 2001. Retrieved 17 October 2023.
  11. ENSDF analysis available at National Nuclear Data Center. "NuDat 3.0 database". Brookhaven National Laboratory.