Cluster decay

Last updated

Cluster decay, also named heavy particle radioactivity, heavy ion radioactivity or heavy cluster decay, [1] is a rare type of nuclear decay in which an atomic nucleus emits a small "cluster" of neutrons and protons, more than in an alpha particle, but less than a typical binary fission fragment. Ternary fission into three fragments also produces products in the cluster size. The loss of protons from the parent nucleus changes it to the nucleus of a different element, the daughter, with a mass number Ad = AAe and atomic number Zd = ZZe, where Ae = Ne + Ze. [2] For example:

Contents

223
88
Ra
14
6
C
+ 209
82
Pb

This type of rare decay mode was observed in radioisotopes that decay predominantly by alpha emission, and it occurs only in a small percentage of the decays for all such isotopes. [3]

The branching ratio with respect to alpha decay is rather small (see the Table below).

Ta and Tc are the half-lives of the parent nucleus relative to alpha decay and cluster radioactivity, respectively.

Cluster decay, like alpha decay, is a quantum tunneling process: in order to be emitted, the cluster must penetrate a potential barrier. This is a different process than the more random nuclear disintegration that precedes light fragment emission in ternary fission, which may be a result of a nuclear reaction, but can also be a type of spontaneous radioactive decay in certain nuclides, demonstrating that input energy is not necessarily needed for fission, which remains a fundamentally different process mechanistically.

In the absence of any energy loss for fragment deformation and excitation, as in cold fission phenomena or in alpha decay, the total kinetic energy is equal to the Q-value and is divided between the particles in inverse proportion with their masses, as required by conservation of linear momentum

where Ad is the mass number of the daughter, Ad = AAe.

Cluster decay exists in an intermediate position between alpha decay (in which a nucleus spits out a 4He nucleus), and spontaneous fission, in which a heavy nucleus splits into two (or more) large fragments and an assorted number of neutrons. Spontaneous fission ends up with a probabilistic distribution of daughter products, which sets it apart from cluster decay. In cluster decay for a given radioisotope, the emitted particle is a light nucleus and the decay method always emits this same particle. For heavier emitted clusters, there is otherwise practically no qualitative difference between cluster decay and spontaneous cold fission.

History

The first information about the atomic nucleus was obtained at the beginning of the 20th century by studying radioactivity. For a long period of time only three kinds of nuclear decay modes (alpha, beta, and gamma) were known. They illustrate three of the fundamental interactions in nature: strong, weak, and electromagnetic. Spontaneous fission became better studied soon after its discovery in 1940 by Konstantin Petrzhak and Georgy Flyorov because of both the military and the peaceful applications of induced fission. This was discovered circa 1939 by Otto Hahn, Lise Meitner, and Fritz Strassmann.

There are many other kinds of radioactivity, e.g. cluster decay, proton emission, various beta-delayed decay modes (p, 2p, 3p, n, 2n, 3n, 4n, d, t, alpha, f), fission isomers, particle accompanied (ternary) fission, etc. The height of the potential barrier, mainly of Coulomb nature, for emission of the charged particles is much higher than the observed kinetic energy of the emitted particles. The spontaneous decay can only be explained by quantum tunneling in a similar way to the first application of the Quantum Mechanics to Nuclei given by G. Gamow for alpha decay.

In 1980 A. Sandulescu, D.N. Poenaru, and W. Greiner described calculations indicating the possibility of a new type of decay of heavy nuclei intermediate between alpha decay and spontaneous fission. The first observation of heavy-ion radioactivity was that of a 30-MeV, carbon-14 emission from radium-223 by H.J. Rose and G.A. Jones in 1984.

Encyclopædia Britannica, [4]

Usually the theory explains an already experimentally observed phenomenon. Cluster decay is one of the rare examples of phenomena predicted before experimental discovery. Theoretical predictions were made in 1980, [5] four years before experimental discovery. [6]

Four theoretical approaches were used: fragmentation theory by solving a Schrödinger equation with mass asymmetry as a variable to obtain the mass distributions of fragments; penetrability calculations similar to those used in traditional theory of alpha decay, and superasymmetric fission models, numerical (NuSAF) and analytical (ASAF). Superasymmetric fission models are based on the macroscopic-microscopic approach [7] using the asymmetrical two-center shell model [8] [9] level energies as input data for the shell and pairing corrections. Either the liquid drop model [10] or the Yukawa-plus-exponential model [11] extended to different charge-to-mass ratios [12] have been used to calculate the macroscopic deformation energy.

Penetrability theory predicted eight decay modes: 14C, 24Ne, 28Mg, 32,34Si, 46Ar, and 48,50Ca from the following parent nuclei: 222,224Ra, 230,232Th, 236,238U, 244,246Pu, 248,250Cm, 250,252Cf, 252,254Fm, and 252,254No. [13]

The first experimental report was published in 1984, when physicists at Oxford University discovered that 223Ra emits one 14C nucleus among every billion (109) decays by alpha emission.

Theory

The quantum tunneling may be calculated either by extending fission theory to a larger mass asymmetry or by heavier emitted particle from alpha decay theory. [14]

Both fission-like and alpha-like approaches are able to express the decay constant , as a product of three model-dependent quantities

where is the frequency of assaults on the barrier per second, S is the preformation probability of the cluster at the nuclear surface, and Ps is the penetrability of the external barrier. In alpha-like theories S is an overlap integral of the wave function of the three partners (parent, daughter, and emitted cluster). In a fission theory the preformation probability is the penetrability of the internal part of the barrier from the initial turning point Ri to the touching point Rt. [15] Very frequently it is calculated by using the Wentzel-Kramers-Brillouin (WKB) approximation.

A very large number, of the order 105, of parent-emitted cluster combinations were considered in a systematic search for new decay modes. The large amount of computations could be performed in a reasonable time by using the ASAF model developed by Dorin N Poenaru, Walter Greiner, et al. The model was the first to be used to predict measurable quantities in cluster decay. More than 150 cluster decay modes have been predicted before any other kind of half-lives calculations have been reported. Comprehensive tables of half-lives, branching ratios, and kinetic energies have been published, e.g. [16] [17] Potential barrier shapes similar to that considered within the ASAF model have been calculated by using the macroscopic-microscopic method. [18]

Previously [19] it was shown that even alpha decay may be considered a particular case of cold fission. The ASAF model may be used to describe in a unified manner cold alpha decay, cluster decay, and cold fission (see figure 6.7, p. 287 of the Ref. [2]).

One can obtain with good approximation one universal curve (UNIV) for any kind of cluster decay mode with a mass number Ae, including alpha decay

In a logarithmic scale the equation log T = f(log Ps) represents a single straight line which can be conveniently used to estimate the half-life. A single universal curve for alpha decay and cluster decay modes results by expressing log T + log S = f(log Ps). [20] The experimental data on cluster decay in three groups of even-even, even-odd, and odd-even parent nuclei are reproduced with comparable accuracy by both types of universal curves, fission-like UNIV and UDL [21] derived using alpha-like R-matrix theory.

In order to find the released energy

one can use the compilation of measured masses [22] M, Md, and Me of the parent, daughter, and emitted nuclei, c is the light velocity. The mass excess is transformed into energy according to the Einstein's formula E = mc2.

Experiments

The main experimental difficulty in observing cluster decay comes from the need to identify a few rare events against a background of alpha particles. The quantities experimentally determined are the partial half life, Tc, and the kinetic energy of the emitted cluster Ek. There is also a need to identify the emitted particle.

Detection of radiations is based on their interactions with matter, leading mainly to ionizations. Using a semiconductor telescope and conventional electronics to identify the 14C ions, the Rose and Jones's experiment was running for about six months in order to get 11 useful events.

With modern magnetic spectrometers (SOLENO and Enge-split pole), at Orsay and Argonne National Laboratory (see ch. 7 in Ref. [2] pp. 188–204), a very strong source could be used, so that results were obtained in a run of few hours.

Solid state nuclear track detectors (SSNTD) insensitive to alpha particles and magnetic spectrometers in which alpha particles are deflected by a strong magnetic field have been used to overcome this difficulty. SSNTD are cheap and handy but they need chemical etching and microscope scanning.

A key role in experiments on cluster decay modes performed in Berkeley, Orsay, Dubna, and Milano was played by P. Buford Price, Eid Hourany, Michel Hussonnois, Svetlana Tretyakova, A. A. Ogloblin, Roberto Bonetti, and their coworkers.

The main region of 20 emitters experimentally observed until 2010 is above Z = 86: 221Fr, 221-224,226Ra, 223,225Ac, 228,230Th, 231Pa, 230,232-236U, 236,238Pu, and 242Cm. Only upper limits could be detected in the following cases: 12C decay of 114Ba, 15N decay of 223Ac, 18O decay of 226Th, 24,26Ne decays of 232Th and of 236U, 28Mg decays of 232,233,235U, 30Mg decay of 237Np, and 34Si decay of 240Pu and of 241Am.

Some of the cluster emitters are members of the three natural radioactive families. Others should be produced by nuclear reactions. Up to now no odd-odd emitter has been observed.

From many decay modes with half-lives and branching ratios relative to alpha decay predicted with the analytical superasymmetric fission (ASAF) model, the following 11 have been experimentally confirmed: 14C, 20O, 23F, 22,24-26Ne, 28,30Mg, and 32,34Si. The experimental data are in good agreement with predicted values. A strong shell effect can be seen: as a rule the shortest value of the half-life is obtained when the daughter nucleus has a magic number of neutrons (Nd = 126) and/or protons (Zd = 82).

The known cluster emissions as of 2010 are as follows: [23] [24] [25]

IsotopeEmitted particle Branching ratio log T(s)Q (MeV)
114Ba 12C < 3.4×10−5> 4.1018.985
221Fr 14C 8.14×10−1314.5231.290
221Ra 14C 1.15×10−1213.3932.394
222Ra 14C 3.7×10−1011.0133.049
223Ra 14C 8.9×10−1015.0431.829
224Ra 14C 4.3×10−1115.8630.535
223Ac 14C 3.2×10−1112.9633.064
225Ac 14C 4.5×10−1217.2830.476
226Ra 14C 3.2×10−1121.1928.196
228Th 20O 1.13×10−1320.7244.723
230Th 24Ne 5.6×10−1324.6157.758
231Pa 23F 9.97×10−1526.0251.844
24Ne 1.34×10−1122.8860.408
230U 22Ne 4.8×10−1419.5761.388
232U 24Ne 9.16×10−1220.4062.309
28Mg < 1.18×10−13> 22.2674.318
233U 24Ne 7.2×10−1324.8460.484
25Ne 60.776
28Mg <1.3×10−15> 27.5974.224
234U 28Mg 1.38×10−1325.1474.108
24Ne 9.9×10−1425.8858.825
26Ne 59.465
235U 24Ne 8.06×10−1227.4257.361
25Ne 57.756
28Mg < 1.8×10−12> 28.0972.162
29Mg 72.535
236U 24Ne < 9.2×10−12> 25.9055.944
26Ne 56.753
28Mg 2×10−1327.5870.560
30Mg 72.299
236Pu 28Mg 2.7×10−1421.5279.668
237Np 30Mg < 1.8×10−14> 27.5774.814
238Pu 32Si 1.38×10−1625.2791.188
28Mg 5.62×10−1725.7075.910
30Mg 76.822
240Pu 34Si < 6×10−15> 25.5291.026
241Am 34Si < 7.4×10−16> 25.2693.923
242Cm 34Si 1×10−1623.1596.508

Fine structure

The fine structure in 14C radioactivity of 223Ra was discussed for the first time by M. Greiner and W. Scheid in 1986. [26] The superconducting spectrometer SOLENO of IPN Orsay has been used since 1984 to identify 14C clusters emitted from 222–224,226Ra nuclei. Moreover, it was used to discover [27] [28] the fine structure observing transitions to excited states of the daughter. A transition with an excited state of 14C predicted in Ref. [26] was not yet observed.

Surprisingly, the experimentalists had seen a transition to the first excited state of the daughter stronger than that to the ground state. The transition is favoured if the uncoupled nucleon is left in the same state in both parent and daughter nuclei. Otherwise the difference in nuclear structure leads to a large hindrance.

The interpretation [29] was confirmed: the main spherical component of the deformed parent wave function has an i11/2 character, i.e. the main component is spherical.

Related Research Articles

<span class="mw-page-title-main">Alpha decay</span> Type of radioactive decay

Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an atomic number that is reduced by two. An alpha particle is identical to the nucleus of a helium-4 atom, which consists of two protons and two neutrons. It has a charge of +2 e and a mass of 4 Da. For example, uranium-238 decays to form thorium-234.

<span class="mw-page-title-main">Meitnerium</span> Chemical element, symbol Mt and atomic number 109

Meitnerium is a synthetic chemical element; it has symbol Mt and atomic number 109. It is an extremely radioactive synthetic element. The most stable known isotope, meitnerium-278, has a half-life of 4.5 seconds, although the unconfirmed meitnerium-282 may have a longer half-life of 67 seconds. The GSI Helmholtz Centre for Heavy Ion Research near Darmstadt, Germany, first created this element in 1982. It is named after Lise Meitner.

<span class="mw-page-title-main">Nuclear physics</span> Field of physics that studies atomic nuclei

Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.

<span class="mw-page-title-main">Rutherfordium</span> Chemical element, symbol Rf and atomic number 104

Rutherfordium is a synthetic chemical element; it has symbol Rf and atomic number 104. It is named after physicist Ernest Rutherford. As a synthetic element, it is not found in nature and can only be made in a particle accelerator. It is radioactive; the most stable known isotope, 267Rf, has a half-life of about 48 minutes.

<span class="mw-page-title-main">Darmstadtium</span> Chemical element, symbol Ds and atomic number 110

Darmstadtium is a synthetic chemical element; it has symbol Ds and atomic number 110. It is extremely radioactive: the most stable known isotope, darmstadtium-281, has a half-life of approximately 14 seconds. Darmstadtium was first created in 1994 by the GSI Helmholtz Centre for Heavy Ion Research in the city of Darmstadt, Germany, after which it was named.

<span class="mw-page-title-main">Roentgenium</span> Chemical element, symbol Rg and atomic number 111

Roentgenium is a synthetic chemical element; it has symbol Rg and atomic number 111. It is extremely radioactive and can only be created in a laboratory. The most stable known isotope, roentgenium-282, has a half-life of 120 seconds, although the unconfirmed roentgenium-286 may have a longer half-life of about 10.7 minutes. Roentgenium was first created in 1994 by the GSI Helmholtz Centre for Heavy Ion Research near Darmstadt, Germany. It is named after the physicist Wilhelm Röntgen, who discovered X-rays. Only a few roentgenium atoms have ever been synthesized, and they have no practical application.

<span class="mw-page-title-main">Island of stability</span> Predicted set of isotopes of relatively more stable superheavy elements

In nuclear physics, the island of stability is a predicted set of isotopes of superheavy elements that may have considerably longer half-lives than known isotopes of these elements. It is predicted to appear as an "island" in the chart of nuclides, separated from known stable and long-lived primordial radionuclides. Its theoretical existence is attributed to stabilizing effects of predicted "magic numbers" of protons and neutrons in the superheavy mass region.

<span class="mw-page-title-main">Unbinilium</span> Chemical element, symbol Ubn and atomic number 120

Unbinilium, also known as eka-radium or element 120, is a hypothetical chemical element; it has symbol Ubn and atomic number 120. Unbinilium and Ubn are the temporary systematic IUPAC name and symbol, which are used until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table of the elements, it is expected to be an s-block element, an alkaline earth metal, and the second element in the eighth period. It has attracted attention because of some predictions that it may be in the island of stability.

Moscovium is a synthetic chemical element; it has symbol Mc and atomic number 115. It was first synthesized in 2003 by a joint team of Russian and American scientists at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. In December 2015, it was recognized as one of four new elements by the Joint Working Party of international scientific bodies IUPAC and IUPAP. On 28 November 2016, it was officially named after the Moscow Oblast, in which the JINR is situated.

<span class="mw-page-title-main">Proton emission</span> Type of radioactive decay

Proton emission is a rare type of radioactive decay in which a proton is ejected from a nucleus. Proton emission can occur from high-lying excited states in a nucleus following a beta decay, in which case the process is known as beta-delayed proton emission, or can occur from the ground state of very proton-rich nuclei, in which case the process is very similar to alpha decay. For a proton to escape a nucleus, the proton separation energy must be negative —the proton is therefore unbound, and tunnels out of the nucleus in a finite time. The rate of proton emission is governed by the nuclear, Coulomb, and centrifugal potentials of the nucleus, where centrifugal potential affects a large part of the rate of proton emission. Half-life of proton emission is affected by the proton energy and its orbital angular momentum. Proton emission is not seen in naturally occurring isotopes; proton emitters can be produced via nuclear reactions, usually using linear particle accelerators.

<span class="mw-page-title-main">Spontaneous fission</span> Form of radioactive decay

Spontaneous fission (SF) is a form of radioactive decay in which a heavy atomic nucleus splits into two or more lighter nuclei. In comparison to induced fission, there is no inciting particle to trigger the decay, it is a purely probabilistic process.

Unbibium, also known as element 122 or eka-thorium, is a hypothetical chemical element; it has placeholder symbol Ubb and atomic number 122. Unbibium and Ubb are the temporary systematic IUPAC name and symbol respectively, which are used until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table of the elements, it is expected to follow unbiunium as the second element of the superactinides and the fourth element of the 8th period. Similarly to unbiunium, it is expected to fall within the range of the island of stability, potentially conferring additional stability on some isotopes, especially 306Ubb which is expected to have a magic number of neutrons (184).

Darmstadtium (110Ds) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 269Ds in 1994. There are 11 known radioisotopes from 267Ds to 281Ds and 2 or 3 known isomers. The longest-lived isotope is 281Ds with a half-life of 14 seconds.

<span class="mw-page-title-main">Valley of stability</span> Characterization of nuclide stability

In nuclear physics, the valley of stability is a characterization of the stability of nuclides to radioactivity based on their binding energy. Nuclides are composed of protons and neutrons. The shape of the valley refers to the profile of binding energy as a function of the numbers of neutrons and protons, with the lowest part of the valley corresponding to the region of most stable nuclei. The line of stable nuclides down the center of the valley of stability is known as the line of beta stability. The sides of the valley correspond to increasing instability to beta decay. The decay of a nuclide becomes more energetically favorable the further it is from the line of beta stability. The boundaries of the valley correspond to the nuclear drip lines, where nuclides become so unstable they emit single protons or single neutrons. Regions of instability within the valley at high atomic number also include radioactive decay by alpha radiation or spontaneous fission. The shape of the valley is roughly an elongated paraboloid corresponding to the nuclide binding energies as a function of neutron and atomic numbers.

Cold fission or cold nuclear fission is defined as involving fission events for which fission fragments have such low excitation energy that no neutrons or gammas are emitted.

<span class="mw-page-title-main">Alpha particle</span> Helium-4 nucleus; particle of two protons and two neutrons

Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α. The symbol for the alpha particle is α or α2+. Because they are identical to helium nuclei, they are also sometimes written as He2+
or 4
2
He2+
indicating a helium ion with a +2 charge. Once the ion gains electrons from its environment, the alpha particle becomes a normal helium atom 4
2
He
.

Dorin Mircea Stelian Poenaru is a Romanian nuclear physicist and engineer. He contributed to the theory of heavy particle radioactivity.

Unbiunium, also known as eka-actinium or element 121, is a hypothetical chemical element; it has symbol Ubu and atomic number 121. Unbiunium and Ubu are the temporary systematic IUPAC name and symbol respectively, which are used until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table of the elements, it is expected to be the first of the superactinides, and the third element in the eighth period. It has attracted attention because of some predictions that it may be in the island of stability. It is also likely to be the first of a new g-block of elements.

Unbiquadium, also known as element 124 or eka-uranium, is a hypothetical chemical element; it has placeholder symbol Ubq and atomic number 124. Unbiquadium and Ubq are the temporary IUPAC name and symbol, respectively, until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table, unbiquadium is expected to be a g-block superactinide and the sixth element in the 8th period. Unbiquadium has attracted attention, as it may lie within the island of stability, leading to longer half-lives, especially for 308Ubq which is predicted to have a magic number of neutrons (184).

Unbihexium, also known as element 126 or eka-plutonium, is a hypothetical chemical element; it has atomic number 126 and placeholder symbol Ubh. Unbihexium and Ubh are the temporary IUPAC name and symbol, respectively, until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table, unbihexium is expected to be a g-block superactinide and the eighth element in the 8th period. Unbihexium has attracted attention among nuclear physicists, especially in early predictions targeting properties of superheavy elements, for 126 may be a magic number of protons near the center of an island of stability, leading to longer half-lives, especially for 310Ubh or 354Ubh which may also have magic numbers of neutrons.

References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae."
  2. Poenaru, Dorin N.; Greiner, Walter (2011). "Cluster Radioactivity". Clusters in Nuclei I. Lecture Notes in Physics. Vol. 818. Berlin: Springer. pp. 1–56. ISBN   978-3-642-13898-0.
  3. Poenaru, D. N.; Greiner, W. (1996). Nuclear Decay Modes. Bristol: Institute of Physics Publishing. pp. 1–577. ISBN   978-0-7503-0338-5.
  4. Encyclopædia Britannica Online. 2011.
  5. Sandulescu, A.; Poenaru, D. N.; Greiner, W. "New type of decay of heavy nuclei intermediate between fission and alpha-decay". Soviet Journal of Particles and Nuclei. 11: 528–541. OSTI   6189038.
  6. Rose, H. J.; Jones, G. A. (1984). "A new kind of natural radioactivity". Nature. 307 (5948): 245–247. Bibcode:1984Natur.307..245R. doi:10.1038/307245a0. S2CID   4312488.
  7. Strutinsky, V. M. (1967). "Shell effects in nuclear masses and deformation energies". Nuclear Physics A. 95 (2): 420–442. Bibcode:1967NuPhA..95..420S. doi:10.1016/0375-9474(67)90510-6.
  8. Maruhn, Joachim; Greiner, Walter (1972). "The asymmetrie two center shell model". Zeitschrift für Physik. 251 (5): 431–457. Bibcode:1972ZPhy..251..431M. doi:10.1007/BF01391737. S2CID   117002558.
  9. Gherghescu, R. A. (2003). "Deformed two-center shell model". Physical Review C. 67 (1): 014309. arXiv: nucl-th/0210064 . Bibcode:2003PhRvC..67a4309G. doi:10.1103/PhysRevC.67.014309. S2CID   119429669.
  10. Myers, William D.; Swiatecki, Wladyslaw J. (1966). "Nuclear masses and deformations". Nuclear Physics. 81: 1–60. doi:10.1016/0029-5582(66)90639-0.
  11. Krappe, H. J.; Nix, J. R.; Sierk, A. J. (1979). "Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations". Physical Review C. 20 (3): 992–1013. Bibcode:1979PhRvC..20..992K. doi:10.1103/PhysRevC.20.992.
  12. Poenaru, D.N.; Ivaşcu, M.; Mazilu, D. (1980). "Folded Yukawa-plus-exponential model pes for nuclei with different charge densities". Computer Physics Communications. 19 (2): 205–214. Bibcode:1980CoPhC..19..205P. doi:10.1016/0010-4655(80)90051-X.
  13. Poenaru, D.N.; Greiner, W. (1995). "Nuclear Decay by Cluster Emission" (PDF). Europhys. News. Retrieved 15 December 2023.
  14. Blendowske, R.; Fliessbach, T.; Walliser, H. (1996). Nuclear Decay Modes. Bristol: Institute of Physics Publishing. pp. 337–349. ISBN   978-0-7503-0338-5.
  15. Poenaru, Dorin N.; Greiner, Walter (1991). "Cluster preformation as barrier penetrability". Physica Scripta. 44 (5): 427–429. Bibcode:1991PhyS...44..427P. doi:10.1088/0031-8949/44/5/004. S2CID   250885957.
  16. Poenaru, D. N.; Ivascu, M.; Sandulescu, A.; Greiner, W. (1984). "Spontaneous emission of heavy clusters". Journal of Physics G. 10 (8): L183–L189. Bibcode:1984JPhG...10L.183P. doi:10.1088/0305-4616/10/8/004. S2CID   250844668.
  17. Poenaru, D. N.; Schnabel, D.; Greiner, W.; Mazilu, D.; Gherghescu, R. (1991). "Nuclear lifetimes for cluster radioactivities". Atomic Data and Nuclear Data Tables. 48 (2): 231–327. Bibcode:1991ADNDT..48..231P. doi:10.1016/0092-640X(91)90008-R.
  18. Poenaru, Dorin N.; Gherghescu, Radu A.; Greiner, Walter (2006). "Potential energy surfaces for cluster emitting nuclei". Physical Review C. 73 (1): 014608. arXiv: nucl-th/0509073 . Bibcode:2006PhRvC..73a4608P. doi:10.1103/PhysRevC.73.014608. S2CID   119434512.
  19. Poenaru, D. N.; Ivascu, M.; Sandulescu, A. (1979). "Alpha decay as a fission-like process". Journal of Physics G. 5 (10): L169–L173. Bibcode:1979JPhG....5L.169P. doi:10.1088/0305-4616/5/10/005. S2CID   250859467.
  20. Poenaru, D. N.; Gherghescu, R. A.; Greiner, W. (2011). "Single universal curve for cluster radioactivities and α-decay". Physical Review C. 83 (1): 014601. Bibcode:2011PhRvC..83a4601P. doi:10.1103/PhysRevC.83.014601.
  21. Qi, C.; Xu, F. R.; Liotta, R. J.; Wyss, R. (2009). "Universal Decay Law in Charged-Particle Emission and Exotic Cluster Radioactivity". Physical Review Letters. 103 (7): 072501. arXiv: 0909.4492 . Bibcode:2009PhRvL.103g2501Q. doi:10.1103/PhysRevLett.103.072501. PMID   19792636. S2CID   34973496.
  22. Audi, G.; Wapstra, A. H.; Thibault, C. (2003). "The Ame2003 atomic mass evaluation". Nuclear Physics A. 729 (1): 337–676. Bibcode:2003NuPhA.729..337A. doi:10.1016/j.nuclphysa.2003.11.003.
  23. Baum, E. M.; et al. (2002). Nuclides and Isotopes: Chart of the nuclides (16th ed.). Knolls Atomic Power Laboratory (Lockheed Martin).
  24. Bonetti, R.; Guglielmetti, A. (2007). "Cluster radioactivity: an overview after twenty years" (PDF). Romanian Reports in Physics. 59: 301–310. Archived from the original (PDF) on 19 September 2016.
  25. Guglielmetti, A.; Faccio, D.; Bonetti, R.; Shishkin, S. V.; Tretyakova, S. P.; Dmitriev, S. V.; Ogloblin, A. A.; Pik-Pichak, G. A.; van der Meulen, N. P.; Steyn, G. F.; van der Walt, T. N.; Vermeulen, C.; McGee, D. (2008). "Carbon radioactivity of223Ac and a search for nitrogen emission". Journal of Physics: Conference Series. 111 (1): 012050. Bibcode:2008JPhCS.111a2050G. doi: 10.1088/1742-6596/111/1/012050 .
  26. 1 2 Greiner, M.; Scheid, W. (1986). "Radioactive decay into excited states via heavy ion emission". Journal of Physics G. 12 (10): L229–L234. Bibcode:1986JPhG...12L.229G. doi:10.1088/0305-4616/12/10/003. S2CID   250914956.
  27. Brillard, L.; Elayi, A. G.; Hourani, E.; Hussonnois, M.; Le Du, J. F.; Rosier, L. H.; Stab, L. (1989). "Mise en évidence d'une structure fine dans la radioactivité 14C". C. R. Acad. Sci. Paris. 309: 1105–1110.
  28. Hourany, E.; Berrier-Ronsin, G.; Elayi, A.; Hoffmann-Rothe, P.; Mueller, A. C.; Rosier, L.; Rotbard, G.; Renou, G.; Lièbe, A.; Poenaru, D. N.; Ravn, H. L. (1995). "223Ra Nuclear Spectroscopy in 14C Radioactivity". Physical Review C. 52 (1): 267–270. Bibcode:1995PhRvC..52..267H. doi:10.1103/physrevc.52.267. PMID   9970505.
  29. Sheline, R. K.; Ragnarsson, I. (1991). "Interpretation of the fine structure in the 14C radioactive decay of 223Ra". Physical Review C. 43 (3): 1476–1479. Bibcode:1991PhRvC..43.1476S. doi:10.1103/PhysRevC.43.1476. PMID   9967191.