Spontaneous fission

Last updated

Spontaneous fission (SF) is a form of radioactive decay in which a heavy atomic nucleus splits into two or more lighter nuclei. In contrast to induced fission, there is no inciting particle to trigger the decay; it is a purely probabilistic process.

Contents

Spontaneous fission is a dominant decay mode for superheavy elements, with nuclear stability generally falling as nuclear mass increases. It thus forms a practical limit to heavy element nucleon number. Heavier nuclides may be created instantaneously by physical processes, both natural (via the r-process) and artificial, though rapidly decay to more stable nuclides. As such, apart from minor decay branches in primordial radionuclides, spontaneous fission is not observed in nature.

Observed fission half-lives range from 4.1 microseconds (250
102
No
) to greater than the current age of the universe (232
90
Th
). [1] :16

History

Following the discovery of induced fission by Otto Hahn and Fritz Strassmann in 1938, Soviet physicists Georgy Flyorov and Konstantin Petrzhak began conducting experiments to explore the effects of incident neutron energy on uranium nuclei. Their equipment recorded fission fragments even when no neutrons were present to induce the decay, and the effect persisted even after the equipment was moved 60 meters underground into the tunnels of the Moscow Metro's Dinamo station in an effort to insulate it from the effects of cosmic rays. The discovery of induced fission itself had come as a surprise, and no other mechanism was known that could account for the observed decays. Such an effect could only be explained by spontaneous fission of the uranium nuclei without external influence. [2]

Mechanism

Spontaneous fission arises as a result of competition between the attractive properties of the strong nuclear force and the mutual coulombic repulsion of the constituent protons. Nuclear binding energy increases in proportion to atomic mass number (A), however coulombic repulsion increases with proton number (Z) squared. Thus, at high mass and proton numbers, coulombic repulsion overpowers the nuclear binding forces, and the nucleus is energetically more stable as two separate fragments than as a single bound system. [3] :478–9

Spontaneous fission is usually a slow process, as the nucleus cannot simply jump to the lower energy (divided) state. Instead it must tunnel through a potential barrier, with a probability determined by the height of the barrier. Such a barrier is energetically possible for all A  93, though its height generally decreases with increasing Z, [3] :433 and fission is only practically observed for A  232. [4]

The stability of a nuclide against fission is expressed as the ratio of the Coulomb energy to the surface energy, which can be empirically estimated as the fissility parameter, x:

with and . [5] :3 For light nuclei, x is small and a sizeable fission barrier exists. As nuclear mass increases, so too does the fissility parameter, eventually approaching and exceeding unity, where stability against fission is lost altogether. [6] :4

Shell effects and nucleon pairing effects may further affect observed half-lives. Decays of odd-A nuclides are hindered by 3–5 orders of magnitude compared to even–even nuclides. [7] :4 The barrier to fission is expected to be zero around A = 300, though an island of stability may exist centred around Z = 114, N = 184. [3] :481–2

To date, true ab initio models describing the complete fission process are not possible. [7] :3 Computational theories based on Hartree-Fock or density-functional theory approaches have been developed, however computational complexity makes it difficult to reproduce the full behaviour. [1] :35 The semi-classical liquid drop model provides a primarily qualitative description of the phenomenology by treating the nucleus as a classical drop of liquid to which quantum corrections can be applied, which provides a useful conceptual picture that matches in part with experimental data, but ignores much of the quantum nature of the system and fails at more rigorous predictions.

In this model, as with a classical liquid drop, a "surface tension" term is introduced which promotes the spherical shape of the nucleus. Acting in opposition is coulombic repulsion term, which acts to increase the distance between repelling proton pairs and thus promotes elongation of the nucleus into an oval shape. [5] :3 As the deformation of the nucleus increases, and particularly for large nuclei due to their stronger coulombic repulsion, the nucleus may find itself in a state where a thin 'neck' develops, forming a bridge between two clusters of nuclear matter which may exceed the ability of the surface tension to restore the undeformed shape, eventually breaking into two fragments at the "scission point". [1] :15 Introducing the effects of quantum tunnelling, the nucleus always has a chance to scission which increases with increasing deformation, and may do so even if the deformation is insufficient to trigger rupture of the neck. After separation, both fragments are highly positively charged and therefore gain significant kinetic energy via their mutual repulsion as they accelerate away from each other.

Shape isomers (also called fission isomers) are excited nuclear states existing before scission which may deviate from the spherical geometry, increasing nuclear deformation compared to the ground state without undergoing full fission. These states are 'metastable' – a nucleus is this state may, on timescales between nanoseconds and microseconds, either decay back to the ground state via gamma-emission, or tunnel through the scission barrier and break apart. Should the nucleus find itself in this state, either through quantum tunnelling or via random statistical fluctuation, the barrier for fission is much reduced, as shape isomers are always at a higher energy level than the ground sate and therefore are no longer required to tunnel through the entire barrier. The resulting increased probability for fission reduces the effective half-life of the nuclide. [3] :494–7 Triple-humped barriers have been suggested for some nuclear species such as 228
90
Th
, further reducing its observed half-life. [8]

Products

Fission fragments are usually neutron-rich and always generated in excited states. [1] :3 Thus, daughter decays occur rapidly after scission. Decays occurring within 10−13s of scission are termed "prompt" and are initially dominated by a series of neutron emissions which remain the dominant decay mode until the fragment energy is reduced to the same order of magnitude as the neutron separation energy (approximately 7  MeV ), when photon emission becomes competitive. Below the neutron separation energy, gamma emission is dominant, characterised by a disordered spectrum of gamma energies with characteristic low-energy peaks corresponding to specific decays as the daughter descends the yrast line, [1] :53–4 each decay carrying away excess angular momentum. [6] :8 Average total prompt gamma emission is 30% higher from the lighter fragment compared to the heavier, implying the heavier fragment is created with higher initial angular momentum. [6] :19 Finally, internal conversion and x-ray emission complete the prompt emissions. [1] :53–4 Daughter products created by prompt decays are often unstable against beta-decay, and further photon and neutron emissions are also expected. Such emissions are termed 'delayed emissions' and take place with half-lives ranging from picoseconds to years. [1] :3

As a result of the large number of decay pathways presented to a fissioning nucleus, there is a large variation in the final products. Fragment masses are normally distributed about two peaks centred at A  95 and A  140. [3] :484 Spontaneous fission does not favour equal-mass fragments, and no convincing explanation has been found to explain this. [3] :484 In rare instances (0.3%), three or more fission fragments may be created. [9] Ternary products are usually alpha-particles, though can be as massive as oxygen nuclei. [1] :46

Total energy release across all products is approximately 200 MeV, [5] :4 mostly observed as kinetic energy of the fission fragments, with the lighter fragment receiving the larger proportion of energy. [3] :491–2 For a given decay path, the number of emitted neutrons is not consistent, and instead follows a gaussian distribution. The distribution about the average, however, is consistent across all decay paths. [3] :486 Prompt neutrons are emitted with energies approximated by (but not precisely fitting) a Maxwell distribution, [6] :17–8 peaking between 0.5 and 1 MeV, with an average energy of 2 MeV and maximum energy of approximately 10 MeV. [10] :4–5 Prompt gamma emission constitutes a further 8 MeV, while beta decay and delayed-gammas contribute a further 19 MeV and 7 MeV respectively. [3] :492 Less than 1% of emitted neutrons are emitted as delayed neutrons. [11]

Applications

The most common application for spontaneous fission is as neutron source for further use. These neutrons may be used for applications such as neutron imaging, or may drive additional nuclear reactions, including initiating induced fission of a target as is common in nuclear reactors and nuclear weapons.

In crystals containing high proportions of uranium, fission products generated via spontaneous fission produce damage trails as the fragments recoil through the crystal structure. The number of trails, or fission tracks, may be used to estimate the age of a sample via fission track dating.

Spontaneous fission rates

Spontaneous fission half-life of various nuclides depending on their Z /A ratio. Nuclides of the same element are linked with a red line. The green line shows the upper limit of half-life. Data taken from French Wikipedia. (SF) Halflife of Radionulides depending on Z2 to A ratio.png
Spontaneous fission half-life of various nuclides depending on their Z /A ratio. Nuclides of the same element are linked with a red line. The green line shows the upper limit of half-life. Data taken from French Wikipedia.
Spontaneous fission rates [12]
NuclideHalf-life
(yrs)
Fission branching ratio
(% of decays)
Neutrons perSpontaneous
half-life (yrs)
Z2/A
FissionGram-sec
235
U
7.04·1082.0·10−71.860.00033.5·101736.0
238
U
4.47·1095.4·10−52.070.01368.4·101535.6
239
Pu
241004.4·10−102.160.0225.5·101537.0
240
Pu
65695.0·10−62.219201.16·101136.8
250
Cm
8300 [13] ~743.311.6·10101.12·10436.9
252
Cf
2.6468 [14] 3.093.732.3·101285.738.1

See also

Notes

  1. 1 2 3 4 5 6 7 8 Schunck, Nicolas; Regnier, David (1 July 2022). "Theory of nuclear fission". Progress in Particle and Nuclear Physics. 125. arXiv: 2201.02719 . doi: 10.1016/j.ppnp.2022.103963 .
  2. Petrzhak, Konstantin. "How the spontaneous fission was discovered" (in Russian).
  3. 1 2 3 4 5 6 7 8 9 Krane, Kenneth S. (1988). Introductory nuclear physics. Hoboken, NJ: Wiley. ISBN   9780471805533.
  4. "What is Spontaneous Fission - Definition". Radiation Dosimetry. 14 December 2019.
  5. 1 2 3 Schunck, N; Robledo, L M (1 November 2016). "Microscopic theory of nuclear fission: a review". Reports on Progress in Physics. 79 (11). arXiv: 1511.07517 . doi:10.1088/0034-4885/79/11/116301. PMID   27727148.
  6. 1 2 3 4 Randrup, J.; Vogt, R. (3 October 2012). Nuclear Fission. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). OSTI   1124864.
  7. 1 2 Bender, Michael; Bernard, Rémi; Bertsch, George; Chiba, Satoshi; Dobaczewski, Jacek; Dubray, Noël; Giuliani, Samuel A; Hagino, Kouichi; Lacroix, Denis; Li, Zhipan; Magierski, Piotr; Maruhn, Joachim; Nazarewicz, Witold; Pei, Junchen; Péru, Sophie; Pillet, Nathalie; Randrup, Jørgen; Regnier, David; Reinhard, Paul-Gerhard; Robledo, Luis M; Ryssens, Wouter; Sadhukhan, Jhilam; Scamps, Guillaume; Schunck, Nicolas; Simenel, Cédric; Skalski, Janusz; Stetcu, Ionel; Stevenson, Paul; Umar, Sait; Verriere, Marc; Vretenar, Dario; Warda, Michał; Åberg, Sven (1 November 2020). "Future of nuclear fission theory". Journal of Physics G: Nuclear and Particle Physics. 47 (11): 113002. doi: 10.1088/1361-6471/abab4f . hdl: 1885/224561 .
  8. McDonnell, J. D.; Nazarewicz, W.; Sheikh, J. A. (22 May 2013). "Third minima in thorium and uranium isotopes in a self-consistent theory". Physical Review C. 87 (5): 054327. arXiv: 1302.1165 . doi: 10.1103/PhysRevC.87.054327 .
  9. Ivanov, M. P; Buklanov, G. V; David, I.; Kushniruk, V. F; Sobolev, Yu. G.; Fomichev, A. S. (1 July 2000). Simultaneous Emission of Two Light Charged Particles in the Spontaneous Fission of 248Cm and 252Cf (PDF). XIV International Workshop on Nuclear Fission Physics.
  10. Capote, R.; Chen, Y.-J.; Hambsch, F.-J.; Kornilov, N.V.; Lestone, J.P.; Litaize, O.; Morillon, B.; Neudecker, D.; Oberstedt, S.; Ohsawa, T.; Otuka, N.; Pronyaev, V.G.; Saxena, A.; Serot, O.; Shcherbakov, O.A.; Shu, N.-C.; Smith, D.L.; Talou, P.; Trkov, A.; Tudora, A.C.; Vogt, R.; Vorobyev, A.S. (January 2016). "Prompt Fission Neutron Spectra of Actinides". Nuclear Data Sheets. 131: 1–106. doi:10.1016/j.nds.2015.12.002. OSTI   1239564.
  11. Shultis, J. Kenneth; Faw, Richard E. (7 September 2007). Fundamentals of Nuclear Science and Engineering. CRC Press. p. 148. ISBN   978-1439894088.
  12. Shultis, J. Kenneth; Faw, Richard E. (2008). Fundamentals of Nuclear Science and Engineering. CRC Press. pp. 141 (table 6.2). ISBN   978-1-4200-5135-3.
  13. Entry at periodictable.com
  14. Entry at periodictable.com

Related Research Articles

<span class="mw-page-title-main">Alpha decay</span> Type of radioactive decay

Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle and thereby transforms or "decays" into a different atomic nucleus, with a mass number that is reduced by four and an atomic number that is reduced by two. An alpha particle is identical to the nucleus of a helium-4 atom, which consists of two protons and two neutrons. It has a charge of +2 e and a mass of 4 Da. For example, uranium-238 decays to form thorium-234.

<span class="mw-page-title-main">Meitnerium</span> Chemical element, symbol Mt and atomic number 109

Meitnerium is a synthetic chemical element; it has symbol Mt and atomic number 109. It is an extremely radioactive synthetic element. The most stable known isotope, meitnerium-278, has a half-life of 4.5 seconds, although the unconfirmed meitnerium-282 may have a longer half-life of 67 seconds. The GSI Helmholtz Centre for Heavy Ion Research near Darmstadt, Germany, first created this element in 1982. It is named after Lise Meitner.

<span class="mw-page-title-main">Neutron</span> Subatomic particle with no charge

The neutron is a subatomic particle, symbol
n
or
n0
, which has a neutral charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, they are both referred to as nucleons. Nucleons have a mass of approximately one atomic mass unit, or dalton, symbol Da. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks.

<span class="mw-page-title-main">Nuclear physics</span> Field of physics that studies atomic nuclei

Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.

<span class="mw-page-title-main">Nuclear fission</span> Nuclear reaction splitting an atom into multiple parts

Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactive decay.

<span class="mw-page-title-main">Island of stability</span> Predicted set of isotopes of relatively more stable superheavy elements

In nuclear physics, the island of stability is a predicted set of isotopes of superheavy elements that may have considerably longer half-lives than known isotopes of these elements. It is predicted to appear as an "island" in the chart of nuclides, separated from known stable and long-lived primordial radionuclides. Its theoretical existence is attributed to stabilizing effects of predicted "magic numbers" of protons and neutrons in the superheavy mass region.

Moscovium is a synthetic chemical element; it has symbol Mc and atomic number 115. It was first synthesized in 2003 by a joint team of Russian and American scientists at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. In December 2015, it was recognized as one of four new elements by the Joint Working Party of international scientific bodies IUPAC and IUPAP. On 28 November 2016, it was officially named after the Moscow Oblast, in which the JINR is situated.

<span class="mw-page-title-main">Neutron emission</span> Type of radioactive decay

Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a nucleus. It occurs in the most neutron-rich/proton-deficient nuclides, and also from excited states of other nuclides as in photoneutron emission and beta-delayed neutron emission. As only a neutron is lost by this process the number of protons remains unchanged, and an atom does not become an atom of a different element, but a different isotope of the same element.

<span class="mw-page-title-main">Nuclear reaction</span> Transformation of a nuclide to another

In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformation of at least one nuclide to another. If a nucleus interacts with another nucleus or particle and they then separate without changing the nature of any nuclide, the process is simply referred to as a type of nuclear scattering, rather than a nuclear reaction.

In nuclear engineering, a delayed neutron is a neutron emitted after a nuclear fission event, by one of the fission products, any time from a few milliseconds to a few minutes after the fission event. Neutrons born within 10−14 seconds of the fission are termed "prompt neutrons".

Unbibium, also known as element 122 or eka-thorium, is a hypothetical chemical element; it has placeholder symbol Ubb and atomic number 122. Unbibium and Ubb are the temporary systematic IUPAC name and symbol respectively, which are used until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table of the elements, it is expected to follow unbiunium as the second element of the superactinides and the fourth element of the 8th period. Similarly to unbiunium, it is expected to fall within the range of the island of stability, potentially conferring additional stability on some isotopes, especially 306Ubb which is expected to have a magic number of neutrons (184).

<span class="mw-page-title-main">Cluster decay</span> Nuclear decay in which an atomic nucleus emits a small cluster of neutrons and protons

Cluster decay, also named heavy particle radioactivity, heavy ion radioactivity or heavy cluster decay, is a rare type of nuclear decay in which an atomic nucleus emits a small "cluster" of neutrons and protons, more than in an alpha particle, but less than a typical binary fission fragment. Ternary fission into three fragments also produces products in the cluster size. The loss of protons from the parent nucleus changes it to the nucleus of a different element, the daughter, with a mass number Ad = AAe and atomic number Zd = ZZe, where Ae = Ne + Ze. For example:

Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, are the chemical elements with atomic number greater than 103. The superheavy elements are those beyond the actinides in the periodic table; the last actinide is lawrencium. By definition, superheavy elements are also transuranium elements, i.e., having atomic numbers greater than that of uranium (92). Depending on the definition of group 3 adopted by authors, lawrencium may also be included to complete the 6d series.

<span class="mw-page-title-main">Nuclear binding energy</span> Minimum energy required to separate particles within a nucleus

Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is always a positive number, as the nucleus must gain energy for the nucleons to move apart from each other. Nucleons are attracted to each other by the strong nuclear force. In theoretical nuclear physics, the nuclear binding energy is considered a negative number. In this context it represents the energy of the nucleus relative to the energy of the constituent nucleons when they are infinitely far apart. Both the experimental and theoretical views are equivalent, with slightly different emphasis on what the binding energy means.

<span class="mw-page-title-main">Valley of stability</span> Characterization of nuclide stability

In nuclear physics, the valley of stability is a characterization of the stability of nuclides to radioactivity based on their binding energy. Nuclides are composed of protons and neutrons. The shape of the valley refers to the profile of binding energy as a function of the numbers of neutrons and protons, with the lowest part of the valley corresponding to the region of most stable nuclei. The line of stable nuclides down the center of the valley of stability is known as the line of beta stability. The sides of the valley correspond to increasing instability to beta decay. The decay of a nuclide becomes more energetically favorable the further it is from the line of beta stability. The boundaries of the valley correspond to the nuclear drip lines, where nuclides become so unstable they emit single protons or single neutrons. Regions of instability within the valley at high atomic number also include radioactive decay by alpha radiation or spontaneous fission. The shape of the valley is roughly an elongated paraboloid corresponding to the nuclide binding energies as a function of neutron and atomic numbers.

<span class="mw-page-title-main">Nuclear drip line</span> Atomic nuclei decay delimiter

The nuclear drip line is the boundary beyond which atomic nuclei are unbound with respect to the emission of a proton or neutron.

Unbiunium, also known as eka-actinium or element 121, is a hypothetical chemical element; it has symbol Ubu and atomic number 121. Unbiunium and Ubu are the temporary systematic IUPAC name and symbol respectively, which are used until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table of the elements, it is expected to be the first of the superactinides, and the third element in the eighth period. It has attracted attention because of some predictions that it may be in the island of stability. It is also likely to be the first of a new g-block of elements.

<span class="mw-page-title-main">Fission barrier</span> Activation energy required for a nucleus of an atom to undergo fission

In nuclear physics and nuclear chemistry, the fission barrier is the activation energy required for a nucleus of an atom to undergo fission. This barrier may also be defined as the minimum amount of energy required to deform the nucleus to the point where it is irretrievably committed to the fission process. The energy to overcome this barrier can come from either neutron bombardment of the nucleus, where the additional energy from the neutron brings the nucleus to an excited state and undergoes deformation, or through spontaneous fission, where the nucleus is already in an excited and deformed state.

Unbiquadium, also known as element 124 or eka-uranium, is a hypothetical chemical element; it has placeholder symbol Ubq and atomic number 124. Unbiquadium and Ubq are the temporary IUPAC name and symbol, respectively, until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table, unbiquadium is expected to be a g-block superactinide and the sixth element in the 8th period. Unbiquadium has attracted attention, as it may lie within the island of stability, leading to longer half-lives, especially for 308Ubq which is predicted to have a magic number of neutrons (184).

Unbihexium, also known as element 126 or eka-plutonium, is a hypothetical chemical element; it has atomic number 126 and placeholder symbol Ubh. Unbihexium and Ubh are the temporary IUPAC name and symbol, respectively, until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table, unbihexium is expected to be a g-block superactinide and the eighth element in the 8th period. Unbihexium has attracted attention among nuclear physicists, especially in early predictions targeting properties of superheavy elements, for 126 may be a magic number of protons near the center of an island of stability, leading to longer half-lives, especially for 310Ubh or 354Ubh which may also have magic numbers of neutrons.