Nuclear drip line

Last updated
Chart of nuclides for carbon to fluorine. Decay modes:
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
proton emission
positron emission or electron capture
stable isotope
beta decay
neutron emission NuclideMap C-F.png
Chart of nuclides for carbon to fluorine. Decay modes:

The nuclear drip line is the boundary beyond which atomic nuclei are unbound with respect to the emission of a proton or neutron.

Contents

An arbitrary combination of protons and neutrons does not necessarily yield a stable nucleus. One can think of moving up or to the right across the table of nuclides by adding a proton or a neutron, respectively, to a given nucleus. However, adding nucleons one at a time to a given nucleus will eventually lead to a newly formed nucleus that immediately decays by emitting a proton (or neutron). Colloquially speaking, the nucleon has leaked or dripped out of the nucleus, hence giving rise to the term drip line.

Drip lines are defined for protons and neutrons at the extreme of the proton-to-neutron ratio; at p:n ratios at or beyond the drip lines, no bound nuclei can exist. While the location of the proton drip line is well known for many elements, the location of the neutron drip line is only known for elements up to neon. [1]

General description

Nuclear stability is limited to those combinations of protons and neutrons described by the chart of the nuclides, also called the valley of stability. The boundaries of this valley are the neutron drip line on the neutron-rich side, and the proton drip line on the proton-rich side. [2] These limits exist because of particle decay, whereby an exothermic nuclear transition can occur by the emission of one or more nucleons (not to be confused with particle decay in particle physics). As such, the drip line may be defined as the boundary beyond which proton or neutron separation energy becomes negative, favoring the emission of a particle from a newly formed unbound system. [2]

Allowed transitions

When considering whether a specific nuclear transmutation, a reaction or a decay, is energetically allowed, one only needs to sum the masses of the initial nucleus/nuclei and subtract from that value the sum of the masses of the product particles. If the result, or Q-value, is positive, then the transmutation is allowed, or exothermic because it releases energy, and if the Q-value is a negative quantity, then it is endothermic as at least that much energy must be added to the system before the transmutation may proceed. For example, to determine if 12C, the most common isotope of carbon, can undergo proton emission to 11B, one finds that about 16 MeV must be added to the system for this process to be allowed. [3] While Q-values can be used to describe any nuclear transmutation, for particle decay, the particle separation energy quantity S, is also used, and it is equivalent to the negative of the Q-value. In other words, the proton separation energy Sp indicates how much energy must be added to a given nucleus to remove a single proton. Thus, the particle drip lines defined the boundaries where the particle separation energy is less than or equal to zero, for which the spontaneous emission of that particle is energetically allowed. [4]

Although the location of the drip lines is well defined as the boundary beyond which particle separation energy becomes negative, the definition of what constitutes a nucleus or an unbound resonance is unclear. [2] Some known nuclei of light elements beyond the drip lines decay with lifetimes on the order of 10−22 seconds; this is sometimes defined to be a limit of nuclear existence because several fundamental nuclear processes (such as vibration and rotation) occur on this timescale. [4] For more massive nuclei, particle emission half-lives may be significantly longer due to a stronger Coulomb barrier and enable other transitions such as alpha and beta decay to instead occur. This renders unambiguous determination of the drip lines difficult, as nuclei with lifetimes long enough to be observed exist far longer than the timescale of particle emission and are most probably bound. [2] Consequently, particle-unbound nuclei are difficult to observe directly, and are instead identified through their decay energy. [4]

Nuclear structure origin of the drip lines

The energy of a nucleon in a nucleus is its rest mass energy minus a binding energy. In addition to this, there is an energy due to degeneracy: for instance, a nucleon with energy E1 will be forced to a higher energy E2 if all the lower energy states are filled. This is because nucleons are fermions and obey Fermi–Dirac statistics. The work done in putting this nucleon to a higher energy level results in a pressure, which is the degeneracy pressure. When the effective binding energy, or Fermi energy, reaches zero, [5] adding a nucleon of the same isospin to the nucleus is not possible, as the new nucleon would have a negative effective binding energy — i.e. it is more energetically favourable (system will have lowest overall energy) for the nucleon to be created outside the nucleus. This defines the particle drip point for that species.

One- and two-particle drip lines

In many cases, nuclides along the drip lines are not contiguous, but rather are separated by so-called one-particle and two-particle drip lines. This is a consequence of even and odd nucleon numbers affecting binding energy, as nuclides with even numbers of nucleons generally have a higher binding energy, and hence greater stability, than adjacent odd nuclei. These energy differences result in the one-particle drip line in an odd-Z or odd-N nuclide, for which prompt proton or neutron emission is energetically favorable in that nuclide and all other odd nuclides further outside the drip line. [5] However, the next even nuclide outside the one-particle drip line may still be particle stable if its two-particle separation energy is non-negative. This is possible because the two-particle separation energy is always greater than the one-particle separation energy, and a transition to a less stable odd nuclide is energetically forbidden. The two-particle drip line is thus defined where the two-particle separation energy becomes negative, and denotes the outermost boundary for particle stability of a species. [5]

The one- and two-neutron drip lines have been experimentally determined up to neon, though unbound odd-N isotopes are known or deduced through non-observance for every element up to magnesium. [2] For example, the last bound odd-N fluorine isotope is 26F, [6] though the last bound even-N isotope is 31F. [1]

Nuclei near the drip lines are uncommon on Earth

Of the three types of naturally occurring radioactivities (α, β, and γ), only alpha decay is a type of decay resulting from the nuclear strong force. The other proton and neutron decays occurred much earlier in the life of the atomic species and before the earth was formed. Thus, alpha decay can be considered either a form of particle decay or, less frequently, as a special case of nuclear fission. The timescale for the nuclear strong force is much faster than that of the nuclear weak force or the electromagnetic force, so the lifetime of nuclei past the drip lines are typically on the order of nanoseconds or less. For alpha decay, the timescale can be much longer than for proton or neutron emission owing to the high Coulomb barrier seen by an alpha-cluster in a nucleus (the alpha particle must tunnel through the barrier). As a consequence, there are no naturally-occurring nuclei on Earth that undergo proton or neutron emission; however, such nuclei can be created, for example, in the laboratory with accelerators or naturally in stars. [7] The Facility for Rare Isotope Beams (FRIB) at Michigan State University came online in mid-2022 and has created many novel radioisotopes, each of which is extracted in a beam and used for study. FRIB runs a beam of relatively stable isotopes through a medium, which disrupts the nuclei and creates numerous novel nuclei, which are then extracted. [8] [9]

Nucleosynthesis

Explosive astrophysical environments often have very large fluxes of high-energy nucleons that can be captured on seed nuclei. In these environments, radiative proton or neutron capture will occur much faster than beta decays, and as astrophysical environments with both large neutron fluxes and high-energy protons are unknown at present, the reaction flow will proceed away from beta-stability towards or up to either the neutron or proton drip lines, respectively. However, once a nucleus reaches a drip line, as we have seen, no more nucleons of that species can be added to the particular nucleus, and the nucleus must first undergo a beta decay before further nucleon captures can occur.

Photodisintegration

While the drip lines impose the ultimate boundaries for nucleosynthesis, in high-energy environments the burning pathway may be limited before the drip lines are reached by photodisintegration, where a high-energy gamma ray knocks a nucleon out of a nucleus. The same nucleus is subject both to a flux of nucleons and photons, so an equilibrium between neutron capture and photodisintegration is reached for nuclides with a sufficiently low neutron separation energy, particularly those near waiting points. [10]

As the photon bath will typically be described by a Planckian distribution, higher energy photons will be less abundant, and so photodisintegration will not become significant until the nucleon separation energy begins to approach zero towards the drip lines, where photodisintegration may be induced by lower energy gamma rays. At 109 kelvin, the photon distribution is energetic enough to knock nucleons out of any nuclei that have particle separation energies less than 3 MeV, [11] but to know which nuclei exist in what abundances one must also consider the competing radiative captures.

As neutron captures can proceed in any energy regime, neutron photodisintegration is unimportant except at higher energies. However, as proton captures are inhibited by the Coulomb barrier, the cross sections for those charged-particle reactions at lower energies are greatly suppressed, and in the higher energy regimes where proton captures have a large probability to occur, there is often a competition between the proton capture and the photodisintegration that occurs in explosive hydrogen burning; but because the proton drip line is relatively much closer to the valley of beta-stability than is the neutron drip line, nucleosynthesis in some environments may proceed as far as either nucleon drip line.[ citation needed ]

Waiting points and time scales

Once radiative capture can no longer proceed on a given nucleus, either from photodisintegration or the drip lines, further nuclear processing to higher mass must either bypass this nucleus by undergoing a reaction with a heavier nucleus such as 4He, or more often wait for the beta decay. Nuclear species where a significant fraction of the mass builds up during a particular nucleosynthesis episode are considered nuclear waiting points, since further processing by fast radiative captures is delayed.

As has been emphasized, the beta decays are the slowest processes occurring in explosive nucleosynthesis. From the nuclear physics side, explosive nucleosynthesis time scales are set simply by summing the beta decay half-lives involved, [12] since the time scale for other nuclear processes is negligible in comparison, although practically speaking this time scale is typically dominated by the sum of a handful of waiting point nuclear half lives.

The r-process

The rapid neutron capture process is believed to operate very close to the neutron drip line, though the astrophysical site of the r-process, while widely believed to take place in core-collapse supernovae, is unknown. While the neutron drip line is very poorly determined experimentally, and the exact reaction flow is not precisely known, various models predict that nuclei along the r-process path have a two-neutron separation energy (S2n) of approximately 2 MeV. Beyond this point, stability is thought to rapidly decrease in the vicinity of the drip line, with beta decay occurring before further neutron capture. [13] In fact, the nuclear physics of extremely neutron-rich matter is a fairly new subject, and already has led to the discovery of the island of inversion and halo nuclei such as 11Li, which has a very diffuse neutron skin leading to a total radius comparable to that of 208Pb.[ clarification needed ] Thus, although the neutron drip line and the r-process are linked very closely in research, it is an unknown frontier awaiting future research, both from theory and experiment.

The rp-process

The rapid proton capture process in X-ray bursts runs at the proton drip line except near some photodisintegration waiting points. This includes the nuclei 21Mg, 30S, 34Ar, 38Ca, 56Ni, 60Zn, 64Ge, 68Se, 72Kr, 76Sr, and 80Zr. [14] [15]

One clear nuclear structure pattern that emerges is the importance of pairing, as one notices all the waiting points above are at nuclei with an even number of protons, and all but 21Mg also have an even number of neutrons. However, the waiting points will depend on the assumptions of the X-ray burst model, such as metallicity, accretion rate, and the hydrodynamics, along with the nuclear uncertainties, and as mentioned above, the exact definition of the waiting point may not be consistent from one study to the next. Although there are nuclear uncertainties, compared to other explosive nucleosynthesis processes, the rp-process is quite well experimentally constrained, as, for example, all the above waiting point nuclei have at the least been observed in the laboratory. Thus as the nuclear physics inputs can be found in the literature or data compilations, the Computational Infrastructure for Nuclear Astrophysics allows one to do post-processing calculations on various X-ray burst models, and define for oneself the criteria for the waiting point, as well as alter any nuclear parameters.

While the rp-process in X-ray bursts may have difficulty bypassing the 64Ge waiting point, [15] certainly in X-ray pulsars where the rp-process is stable, instability toward alpha decay places an upper limit near A = 100 on the mass that can be reached through continuous burning. [16] The exact limit is a matter presently under investigation; 104–109Te are known to undergo alpha decay whereas 103Sb is proton-unbound. [6] Even before the limit near A = 100 is reached, the proton flux is thought to considerably decrease and thus slow down the rp-process, before low capture rate and a cycle of transmutations between isotopes of tin, antimony, and tellurium upon further proton capture terminate it altogether. [17] However, it has been shown that if there are episodes of cooling or mixing of previous ashes into the burning zone, material as heavy as 126Xe can be created. [18]

Neutron stars

In neutron stars, neutron heavy nuclei are found as relativistic electrons penetrate the nuclei and produce inverse beta decay, wherein the electron combines with a proton in the nucleus to make a neutron and an electron-neutrino:


p
 
+ 
e
 
 
n
 
+ 
ν
e

As more and more neutrons are created in nuclei the energy levels for neutrons get filled up to an energy level equal to the rest mass of a neutron. At this point any electron penetrating a nucleus will create a neutron, which will "drip" out of the nucleus. At this point we have:[ citation needed ]

And from this point onwards the equation

applies, where pFn is the Fermi momentum of the neutron. As we go deeper into the neutron star the free neutron density increases, and as the Fermi momentum increases with increasing density, the Fermi energy increases, so that energy levels lower than the top level reach neutron drip and more and more neutrons drip out of nuclei so that we get nuclei in a neutron fluid. Eventually all the neutrons drip out of nuclei and we have reached the neutron fluid interior of the neutron star.

Known values

Neutron drip line

The values of the neutron drip line are only known for the first ten elements, hydrogen to neon. [19] For oxygen (Z = 8), the maximal number of bound neutrons is 16, rendering 24O the heaviest particle-bound oxygen isotope. [20] For neon (Z = 10), the maximal number of bound neutrons increases to 24 in the heaviest particle-stable isotope 34Ne. The location of the neutron drip line for fluorine and neon was determined in 2017 by the non-observation of isotopes immediately beyond the drip line. The same experiment found that the heaviest bound isotope of the next element, sodium, is at least 39Na. [21] [22] These were the first new discoveries along the neutron drip line in over twenty years. [1]

The neutron drip line is expected to diverge from the line of beta stability after calcium with an average neutron-to-proton ratio of 2.4. [2] Hence, is predicted that the neutron drip line will fall out of reach for elements beyond zinc (where the drip line is estimated around N = 60) or possibly zirconium (estimated N = 88), as no known experimental techniques are theoretically capable of creating the necessary imbalance of protons and neutrons in drip line isotopes of heavier elements. [2] Indeed, neutron-rich isotopes such as 49S, 52Cl, and 53Ar that were calculated to lie beyond the drip line have been reported as bound in 2017–2019, indicating that the neutron drip line may lie even farther away from the beta-stability line than predicted. [23]

The table below lists the heaviest particle-bound isotope of the first ten elements. [24]

ZIsotope
1 3H
28He
311Li
414Be
517B, 19B
622C
723N
824O
931F
1034Ne

Not all lighter isotopes are bound. For example, 39Na is bound, but 38Na is unbound. [1] As another example, although 6He and 8He are bound, 5He and 7He are not.

Proton drip line

The general location of the proton drip line is well established. For all elements occurring naturally on earth and having an odd number of protons, at least one species with a proton separation energy less than zero has been experimentally observed. Up to germanium, the location of the drip line for many elements with an even number of protons is known, but none past that point are listed in the evaluated nuclear data. There are a few exceptional cases where, due to nuclear pairing, there are some particle-bound species outside the drip line, such as 8B and 178Au.[ verification needed ] One may also note that nearing the magic numbers, the drip line is less understood. A compilation of the first unbound nuclei known to lie beyond the proton drip line is given below, with the number of protons, Z and the corresponding isotopes, taken from the National Nuclear Data Center. [25]

ZIsotope
22He
35Li
46Be
57B, 9B
68C
711N
812O
916F
1016Ne
1119Na
1219Mg
1321Al
1525P
1730Cl
1830Ar [26]
1934K
2139Sc
2238Ti [27]
2342V
2545Mn
2750Co
2955Cu
3054Zn [28]
3159Ga
3258Ge
3365As
3569Br
3773Rb
3977Y
4181Nb
4385Tc
4589Rh
4793Ag
4997In
51105Sb
53110I
55115Cs
57119La
59123Pr
61128Pm
63134Eu
65139Tb
67145Ho
69149Tm
71155Lu
73159Ta
75165Re
77171Ir
79175Au, 177Au
81181Tl
83189Bi
85195At
87201Fr
89207Ac
91214Pa
93219Np [29]

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Atom</span> Smallest unit of a chemical element

Atoms are the basic particles of the chemical elements. An atom consists of a nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished from each other by the number of protons that are in their atoms. For example, any atom that contains 11 protons is sodium, and any atom that contains 29 protons is copper. Atoms with the same number of protons but a different number of neutrons are called isotopes of the same element.

<span class="mw-page-title-main">Beta decay</span> Type of radioactive decay

In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle, transforming into an isobar of that nuclide. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino; or, conversely a proton is converted into a neutron by the emission of a positron with a neutrino in what is called positron emission. Neither the beta particle nor its associated (anti-)neutrino exist within the nucleus prior to beta decay, but are created in the decay process. By this process, unstable atoms obtain a more stable ratio of protons to neutrons. The probability of a nuclide decaying due to beta and other forms of decay is determined by its nuclear binding energy. The binding energies of all existing nuclides form what is called the nuclear band or valley of stability. For either electron or positron emission to be energetically possible, the energy release or Q value must be positive.

<span class="mw-page-title-main">Neutron</span> Subatomic particle with no charge

The neutron is a subatomic particle, symbol
n
or
n0
, which has no electric charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave similarly within the nucleus, they are both referred to as nucleons. Nucleons have a mass of approximately one atomic mass unit, or dalton. Their properties and interactions are described by nuclear physics. Protons and neutrons are not elementary particles; each is composed of three quarks.

<span class="mw-page-title-main">Nuclear physics</span> Field of physics that studies atomic nuclei

Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.

<span class="mw-page-title-main">Island of stability</span> Predicted set of isotopes of relatively more stable superheavy elements

In nuclear physics, the island of stability is a predicted set of isotopes of superheavy elements that may have considerably longer half-lives than known isotopes of these elements. It is predicted to appear as an "island" in the chart of nuclides, separated from known stable and long-lived primordial radionuclides. Its theoretical existence is attributed to stabilizing effects of predicted "magic numbers" of protons and neutrons in the superheavy mass region.

<span class="mw-page-title-main">Electron capture</span> Process in which a proton-rich nuclide absorbs an inner atomic electron

Electron capture is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. This process thereby changes a nuclear proton to a neutron and simultaneously causes the emission of an electron neutrino.

<span class="mw-page-title-main">Proton emission</span> Type of radioactive decay

Proton emission is a rare type of radioactive decay in which a proton is ejected from a nucleus. Proton emission can occur from high-lying excited states in a nucleus following a beta decay, in which case the process is known as beta-delayed proton emission, or can occur from the ground state of very proton-rich nuclei, in which case the process is very similar to alpha decay. For a proton to escape a nucleus, the proton separation energy must be negative —the proton is therefore unbound, and tunnels out of the nucleus in a finite time. The rate of proton emission is governed by the nuclear, Coulomb, and centrifugal potentials of the nucleus, where centrifugal potential affects a large part of the rate of proton emission. The half-life of a nucleus with respect to proton emission is affected by the proton energy and its orbital angular momentum. Proton emission is not seen in naturally occurring isotopes; proton emitters can be produced via nuclear reactions, usually using linear particle accelerators.

<span class="mw-page-title-main">Neutron emission</span> Type of radioactive decay

Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a nucleus. It occurs in the most neutron-rich/proton-deficient nuclides, and also from excited states of other nuclides as in photoneutron emission and beta-delayed neutron emission. As only a neutron is lost by this process the number of protons remains unchanged, and an atom does not become an atom of a different element, but a different isotope of the same element.

<span class="mw-page-title-main">Spontaneous fission</span> Form of radioactive decay

Spontaneous fission (SF) is a form of radioactive decay in which a heavy atomic nucleus splits into two or more lighter nuclei. In contrast to induced fission, there is no inciting particle to trigger the decay; it is a purely probabilistic process.

<span class="mw-page-title-main">Magic number (physics)</span> Number of protons or neutrons that make a nucleus particularly stable

In nuclear physics, a magic number is a number of nucleons such that they are arranged into complete shells within the atomic nucleus. As a result, atomic nuclei with a "magic" number of protons or neutrons are much more stable than other nuclei. The seven most widely recognized magic numbers as of 2019 are 2, 8, 20, 28, 50, 82, and 126.

<span class="mw-page-title-main">Nuclear binding energy</span> Minimum energy required to separate particles within a nucleus

Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is always a positive number, as the nucleus must gain energy for the nucleons to move apart from each other. Nucleons are attracted to each other by the strong nuclear force. In theoretical nuclear physics, the nuclear binding energy is considered a negative number. In this context it represents the energy of the nucleus relative to the energy of the constituent nucleons when they are infinitely far apart. Both the experimental and theoretical views are equivalent, with slightly different emphasis on what the binding energy means.

A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons and the other represents the number of protons in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element. This system of ordering nuclides can offer a greater insight into the characteristics of isotopes than the better-known periodic table, which shows only elements and not their isotopes. The chart of the nuclides is also known as the Segrè chart, after the Italian physicist Emilio Segrè.

<span class="mw-page-title-main">Valley of stability</span> Characterization of nuclide stability

In nuclear physics, the valley of stability is a characterization of the stability of nuclides to radioactivity based on their binding energy. Nuclides are composed of protons and neutrons. The shape of the valley refers to the profile of binding energy as a function of the numbers of neutrons and protons, with the lowest part of the valley corresponding to the region of most stable nuclei. The line of stable nuclides down the center of the valley of stability is known as the line of beta stability. The sides of the valley correspond to increasing instability to beta decay. The decay of a nuclide becomes more energetically favorable the further it is from the line of beta stability. The boundaries of the valley correspond to the nuclear drip lines, where nuclides become so unstable they emit single protons or single neutrons. Regions of instability within the valley at high atomic number also include radioactive decay by alpha radiation or spontaneous fission. The shape of the valley is roughly an elongated paraboloid corresponding to the nuclide binding energies as a function of neutron and atomic numbers.

Nickel-62 is an isotope of nickel having 28 protons and 34 neutrons.

<span class="mw-page-title-main">Isotope</span> Different atoms of the same element

Isotopes are distinct nuclear species of the same chemical element. They have the same atomic number and position in the periodic table, but different nucleon numbers due to different numbers of neutrons in their nuclei. While all isotopes of a given element have similar chemical properties, they have different atomic masses and physical properties.

<span class="mw-page-title-main">Atomic nucleus</span> Core of an atom; composed of nucleons (protons and neutrons)

The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in 1932, models for a nucleus composed of protons and neutrons were quickly developed by Dmitri Ivanenko and Werner Heisenberg. An atom is composed of a positively charged nucleus, with a cloud of negatively charged electrons surrounding it, bound together by electrostatic force. Almost all of the mass of an atom is located in the nucleus, with a very small contribution from the electron cloud. Protons and neutrons are bound together to form a nucleus by the nuclear force.

<span class="mw-page-title-main">Beta-decay stable isobars</span> Set of nuclides that cannot undergo beta decay

Beta-decay stable isobars are the set of nuclides which cannot undergo beta decay, that is, the transformation of a neutron to a proton or a proton to a neutron within the nucleus. A subset of these nuclides are also stable with regards to double beta decay or theoretically higher simultaneous beta decay, as they have the lowest energy of all isobars with the same mass number.

p-nuclei (p stands for proton-rich) are certain proton-rich, naturally occurring isotopes of some elements between selenium and mercury inclusive which cannot be produced in either the s- or the r-process.

<span class="mw-page-title-main">Even and odd atomic nuclei</span> Nuclear physics classification method

In nuclear physics, properties of a nucleus depend on evenness or oddness of its atomic number Z, neutron number N and, consequently, of their sum, the mass number A. Most importantly, oddness of both Z and N tends to lower the nuclear binding energy, making odd nuclei generally less stable. This effect is not only experimentally observed, but is included in the semi-empirical mass formula and explained by some other nuclear models, such as the nuclear shell model. This difference of nuclear binding energy between neighbouring nuclei, especially of odd-A isobars, has important consequences for beta decay.

<span class="mw-page-title-main">Borromean nucleus</span> Atomic nucleus of three bound components with no paired binding

In nuclear physics, a Borromean nucleus is an atomic nucleus comprising three bound components in which any subsystem of two components is unbound. This has the consequence that if one component is removed, the remaining two comprise an unbound resonance, so that the original nucleus is split into three parts.

References

  1. 1 2 3 4 Tarasov, O.B. (2017). "Production of very neutron rich isotopes: What should we know?".
  2. 1 2 3 4 5 6 7 Thoennessen, M. (2004). "Reaching the limits of nuclear stability" (PDF). Reports on Progress in Physics. 67 (7): 1187–1232. Bibcode:2004RPPh...67.1187T. doi:10.1088/0034-4885/67/7/R04. S2CID   250790169.
  3. Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
  4. 1 2 3 Thoennessen, M. (2016). The Discovery of Isotopes: A Complete Compilation. Springer. pp. 275–292. doi:10.1007/978-3-319-31763-2. ISBN   978-3-319-31761-8. LCCN   2016935977.
  5. 1 2 3 Smolańczuk, R.; Dobaczewski, J. (1993). "Particle-drip lines from the Hartree-Fock-Bogoliubov theory with Skyrme interaction". Physical Review C . 48 (5): R2166–R2169. arXiv: nucl-th/9307023v1 . Bibcode:1993PhRvC..48.2166S. doi:10.1103/PhysRevC.48.R2166. PMID   9969127. S2CID   12117057.
  6. 1 2 Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  7. Mueller, Alex C.; Sherrill, Bradley M. (1993). "Nuclei at the Limits of Particle Stability" (PDF). Annual Review of Nuclear and Particle Science. 43: 529–583. doi:10.1146/annurev.ns.43.120193.002525.
  8. Chapman, Kit (16 February 2021). "Biggest expansion of known chemical universe targeted by FRIB nuclear facility". Physics World. Institute of Physics Publishing.
  9. Department of Energy, Office of Science (2024-11-22). "Researchers Obtain the First High-Precision Mass Measurement of Aluminum-22". FRIB has delivered 270 rare-isotope beams to experiments since the start of user operation in May 2022.
  10. Zhao, B.; Zhang, S. Q. (2019). "The r-process with the Newly Developed High-precision Mass Model WS4". The Astrophysical Journal. 874 (5): 5. doi: 10.3847/1538-4357/ab0702 .
  11. Thielemann, Friedrich-Karl; Kratz, Karl-Ludwig; Pfeiffer, Bernd; Rauscher, Thomas; et al. (1994). "Astrophysics and nuclei far from stability". Nuclear Physics A. 570 (1–2): 329. Bibcode:1994NuPhA.570..329T. doi:10.1016/0375-9474(94)90299-2.
  12. van Wormer, L.; Goerres, J.; Iliadis, C.; Wiescher, M.; et al. (1994). "Reaction rates and reaction sequences in the rp-process". The Astrophysical Journal. 432: 326. Bibcode:1994ApJ...432..326V. doi: 10.1086/174572 .
  13. Wang, R.; Chen, L.W. (2015). "Positioning the neutron drip line and the r-process paths in the nuclear landscape". Physical Review C. 92 (3): 031303–1–031303–5. arXiv: 1410.2498 . Bibcode:2015PhRvC..92c1303W. doi:10.1103/PhysRevC.92.031303. S2CID   59020556.
  14. Koike, O.; Hashimoto, M.; Arai, K.; Wanajo, S. (1999). "Rapid proton capture on accreting neutron stars – effects of uncertainty in the nuclear process". Astronomy and Astrophysics. 342: 464. Bibcode:1999A&A...342..464K.
  15. 1 2 Fisker, Jacob Lund; Schatz, Hendrik; Thielemann, Friedrich-Karl (2008). "Explosive Hydrogen Burning during Type I X-Ray Bursts". The Astrophysical Journal Supplement Series. 174 (1): 261. arXiv: astro-ph/0703311 . Bibcode:2008ApJS..174..261F. doi:10.1086/521104. S2CID   119342620.
  16. Schatz, H.; A. Aprahamian; V. Barnard; L. Bildsten; et al. (April 2001). "End Point of the rp Process on Accreting Neutron Stars" (subscription required). Physical Review Letters. 86 (16): 3471–3474. arXiv: astro-ph/0102418 . Bibcode:2001PhRvL..86.3471S. doi:10.1103/PhysRevLett.86.3471. PMID   11328001. S2CID   46148449 . Retrieved 2006-08-24.
  17. Lahiri, S.; Gangopadhyay, G. (2012). "Endpoint of rp process using relativistic mean field approach and a new mass formula". International Journal of Modern Physics E. 21 (8): 1250074. arXiv: 1207.2924 . Bibcode:2012IJMPE..2150074L. doi:10.1142/S0218301312500747. S2CID   119259433.
  18. Koike, Osamu; Hashimoto, Masa-aki; Kuromizu, Reiko; Fujimoto, Shin-ichirou (2004). "Final Products of the rp-Process on Accreting Neutron Stars". The Astrophysical Journal. 603 (1): 242–251. Bibcode:2004ApJ...603..242K. doi:10.1086/381354. S2CID   121805380.
  19. "Three First-ever Atomic Nuclei Created; New Super-heavy Aluminum Isotopes May Exist". Sciencedaily.com. 2007-10-27. Retrieved 2010-04-06.
  20. "Nuclear Physicists Examine Oxygen's Limits". Sciencedaily.com. 2007-09-18. Retrieved 2010-04-06.
  21. Ahn, D.S.; et al. (2018). New isotope of 39Na and the neutron dripline of neon isotopes using a 345 MeV/nucleon 48Ca beam (Report). RIKEN Accelerator Progress Reports. Vol. 51. p. 82.
  22. Ahn, D. S.; Amano, J.; Baba, H.; Fukuda, N.; Geissel, H.; Inabe, N.; Ishikawa, S.; Iwasa, N.; Komatsubara, T.; Kubo, T.; Kusaka, K.; Morrissey, D. J.; Nakamura, T.; Ohtake, M.; Otsu, H. (2022-11-14). "Discovery of 39Na". Physical Review Letters. 129 (21): 212502. Bibcode:2022PhRvL.129u2502A. doi: 10.1103/PhysRevLett.129.212502 . PMID   36461972.
  23. Neufcourt, L.; Cao, Y.; Nazarewicz, W.; Olsen, E.; Viens, F. (2019). "Neutron drip line in the Ca region from Bayesian model averaging". Physical Review Letters. 122 (6): 062502–1–062502–6. arXiv: 1901.07632 . Bibcode:2019PhRvL.122f2502N. doi:10.1103/PhysRevLett.122.062502. PMID   30822058. S2CID   73508148.
  24. "Interactive Chart of Nuclei". www.nndc.bnl.gov. Archived from the original on 2005-12-23.
  25. "National Nuclear Data Center" . Retrieved 2010-04-13.
  26. Mukha, I.; et al. (2018). "Deep excursion beyond the proton dripline. I. Argon and chlorine isotope chains". Physical Review C. 98 (6): 064308–1–064308–13. arXiv: 1803.10951 . Bibcode:2018PhRvC..98f4308M. doi:10.1103/PhysRevC.98.064308. S2CID   119384311.
  27. Meierfrankenfeld, D.; Bury, A.; Thoennessen, M. (2011). "Discovery of scandium, titanium, mercury, and einsteinium isotopes". Atomic Data and Nuclear Data Tables . 97 (2): 134–151. arXiv: 1003.5128 . Bibcode:2011ADNDT..97..134M. doi:10.1016/j.adt.2010.11.001. S2CID   97263560.
  28. Gross, J.L.; Claes, J.; Kathawa, J.; Thoennessen, M. (2012). "Discovery of zinc, selenium, bromine, and neodymium isotopes". Atomic Data and Nuclear Data Tables . 98 (2): 75–94. arXiv: 1012.2027 . Bibcode:2012ADNDT..98...75G. doi:10.1016/j.adt.2011.12.001. S2CID   67813061.
  29. Zhang, Z. Y.; Gan, Z. G.; Yang, H. B.; et al. (2019). "New isotope 220Np: Probing the robustness of the N = 126 shell closure in neptunium". Physical Review Letters . 122 (19): 192503. Bibcode:2019PhRvL.122s2503Z. doi:10.1103/PhysRevLett.122.192503. PMID   31144958. S2CID   169038981.