Isotopes of gold

Last updated

Isotopes of gold  (79Au)
Main isotopes [1] Decay
Isotope abun­dance half-life (t1/2) mode pro­duct
195Au synth 186.01 d ε 195Pt
196Ausynth6.165 d β+ 196Pt
β 196Hg
197Au100% stable
198Au synth2.6946 dβ 198Hg
199Ausynth3.139 dβ 199Hg
Standard atomic weight Ar°(Au)

Gold (79Au) has one stable isotope, 197Au, and known radioisotopes ranging from 169Au to 210Au, with the most stable 195Au being the most stable with a half-life of 186.01 days, followed by 196Au at 6.165 days. Isotopes heavier than the stable mass number 197 generally decay by beta emission to mercury isotopes, while those lighter decay by electron capture to platinum isotopes or alpha emission to iridium isotopes; 196 decays both to platinum and to mercury. Of the meta states the most stable is 198m2Au at 2.27 days.

Contents

Gold is currently the heaviest monoisotopic element (and is also mononuclidic). Bismuth formerly held that distinction until alpha decay of the 209Bi isotope was observed. All isotopes of gold are either radioactive or, in the case of 197Au, observationally stable, meaning that 197Au is predicted to be radioactive but no actual decay has been observed. [4]

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [5]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6] [n 7]
Spin and
parity [1]
[n 8] [n 4]
Isotopic
abundance
Excitation energy [n 4]
169Au [6] 7990168.99808(32)#1.16+0.50
−0.47
 μs
p (~94%)168Pt(11/2−)
α (~6%)165mIr
170Au [7] 7991169.99602(22)#286+50
−40
 μs
p (89%)169Pt(2)−
α (11%)166Ir
170mAu [7] 282(10) keV617+50
−40
 μs
p (58%)169Pt(9)+
α (42%)166mIr
171Au [7] 7992170.991882(22)22+3
−2
 μs
p170Pt1/2+
α?167Ir
171mAu [7] 258(13) keV1.09(3) msα (66%)167mIr11/2−
p (34%)170Pt
172Au7993171.99000(6)28(4) msα (98%)168Ir(2)−
p (2%)171Pt
β+ 172Pt
172mAu [n 9] 160(250) keV11.0(10) msα168Ir(9,10)+
p?171Pt
173Au7994172.986224(24)25.5(8) msα (86%)169Ir(1/2+)
β+ (14%)173Pt
173mAu214(21) keV12.2(1) msα (89%)169Ir(11/2−)
β+ (11%)173Pt
174Au7995173.98491(11)#139(3) msα (90%)170Ir(3−)
β+ (10%)174Pt
174mAu130(50)# keV162(2) msα?170Ir(9+)
β+?174Pt
175Au7996174.98132(4)200(3) msα (88%)171Ir1/2+
β+ (12%)175Pt
175mAu164(11)# keV136(1) msα (75%)171Ir(11/2−)
β+ (25%)175Pt
176Au7997175.98012(4)1.05(1) sα (75%)172Ir(3−,4−)
β+ (25%)176Pt
176mAu [n 9] 139(13) keV1.36(2) sα?172Ir(8+,9+)
β+?176Pt
177Au7998176.976870(11)1.501(20) sβ+ (60%)177Pt1/2+
α (40%)173Ir
177mAu190(7) keV1.193(13) sα (60%)173Ir11/2−
β+ (40%)177Pt
178Au7999177.976057(11)3.4(5) sβ+ (84%)178Pt(2+,3−)
α (16%)174Ir
178m1Au50.3(2) keV300(10) nsIT178Au(4−,5+)
178m2Au186(14) keV2.7(5) sβ+ (82%)178Pt(7+,8−)
α (18%)174Ir
178m3Au243(14) keV390(10) nsIT178Au(5+,6)
179Au79100178.973174(13)7.1(3) sβ+ (78.0%)179Pt1/2+
α (22.0%)175Ir
179mAu89.5(3) keV327(5) nsIT179Au(3/2−)
180Au79101179.9724898(51)7.9(3) sβ+ (99.42%)180Pt(1+)
α (0.58%)176Ir
181Au79102180.970079(21)13.7(14) sβ+ (97.3%)181Pt(5/2−)
α (2.7%)177Ir
182Au79103181.969614(20)15.5(4) sβ+ (99.87%)182Pt(2+)
α (0.13%)178Ir
183Au79104182.967588(10)42.8(10) sβ+ (99.45%)183Pt5/2−
α (0.55%)179Ir
183mAu73.10(1) keV>1 μsIT183Au(1/2)+
184Au79105183.967452(24)20.6(9) sβ+ (99.99%)184Pt5+
α (0.013%)180Ir
184mAu68.46(4) keV47.6(14) sβ+ (70%)184Pt2+
IT (30%)184Au
α (0.013%)180Ir
185Au79106184.9657989(28)4.25(6) minβ+ (99.74%)185Pt5/2−
α (0.26%)181Ir
185mAu [n 9] 50(50)# keV6.8(3) minβ+185Pt1/2+#
IT?185Au
186Au79107185.965953(23)10.7(5) minβ+186Pt3−
α (8×10−4%)182Ir
186mAu227.77(7) keV110(10) nsIT186Au2+
187Au79108186.964542(24)8.3(2) minβ+187Pt1/2+
α?183Ir
187mAu120.33(14) keV2.3(1) sIT187Au9/2−
188Au79109187.9652480(29)8.84(6) minβ+188Pt1−
189Au79110188.963948(22)28.7(4) minβ+189Pt1/2+
α? (<3×10−5%)185Ir
189m1Au247.25(16) keV4.59(11) minβ+189Pt11/2−
IT?189Au
189m2Au325.12(16) keV190(15) nsIT189Au9/2−
189m3Au2554.8(8) keV242(10) nsIT189Au31/2+
190Au79111189.964752(4)42.8(10) minβ+190Pt1−
α? (<10−6%)186Ir
190mAu [n 9] 200(150)# keV125(20) msIT190Au11−#
β+?190Pt
191Au79112190.963716(5)3.18(8) hβ+191Pt3/2+
191m1Au266.2(7) keV920(110) msIT191Au11/2−
191m2Au2489.6(9) keV402(20) nsIT191Au31/2+
192Au79113191.964818(17)4.94(9) hβ+192Pt1−
192m1Au135.41(25) keV29 msIT192Au5+
192m2Au431.6(5) keV160(20) msIT192Au11−
193Au79114192.964138(9)17.65(15) hβ+193Pt3/2+
193m1Au290.20(4) keV3.9(3) sIT (99.97%)193Au11/2−
β+ (0.03%)193Pt
193m2Au2486.7(6) keV150(50) nsIT193Au31/2+
194Au79115193.9654191(23)38.02(10) hβ+194Pt1−
194m1Au107.4(5) keV600(8) msIT194Au5+
194m2Au475.8(6) keV420(10) msIT194Au11−
195Au79116194.9650378(12)186.01(6) d EC 195Pt3/2+
195m1Au318.58(4) keV30.5(2) sIT195Au11/2−
195m2Au2501(20)# keV12.89(21) μsIT195Au31/2(−)
196Au79117195.966571(3)6.165(11) dβ+ (93.0%)196Pt2−
β (7.0%)196Hg
196m1Au84.656(20) keV8.1(2) sIT196Au5+
196m2Au595.66(4) keV9.603(22) hIT196Au12−
197Au [n 10] 79118196.9665701(6) Observationally Stable [n 11] 3/2+1.0000
197m1Au409.15(8) keV7.73(6) sIT197Au11/2−
197m2Au2532.5(10) keV150(5) nsIT197Au27/2+#
198Au 79119197.9682437(6)2.69464(14) dβ198Hg2−
198m1Au312.2227(20) keV124(4) nsIT198Au5+
198m2Au811.9(15) keV2.272(16) dIT198Au12−
199Au79120198.9687666(6)3.139(7) dβ199Hg3/2+
199mAu548.9405(21) keV440(30) μsIT199Au11/2−
200Au79121199.970757(29)48.4(3) minβ200Hg(1−)
200mAu1010(40) keV18.7(5) hβ (84%)200Hg12−
IT (16%)200Au
201Au79122200.971658(3)26.0(8) minβ201Hg3/2+
201m1Au594(5) keV730(630) μsIT201Au11/2-
201m2Au1610(5) keV5.6(24) μsIT201Au19/2+#
202Au79123201.973856(25)28.4(12) sβ202Hg(1−)
203Au79124202.9751545(33)60(6) sβ203Hg3/2+
203mAu641(3) keV140(44) μsIT203Au11/2−#
204Au79125203.97811(22)#38.3(13) sβ204Hg(2−)
204mAu3816(500)# keV2.1(3) μsIT204Au16+#
205Au79126204.98006(22)#32.0(14) sβ205Hg3/2+#
205m1Au907(5) keV6(2) sIT?205Au11/2−#
β?205Hg
205m2Au2849.7(4) keV163(5) nsIT205Au19/2+#
206Au79127205.98477(32)#47(11) sβ206Hg6+#
207Au79128206.98858(32)#3# s
[>300 ns]
β?207Hg3/2+#
β, n?206Hg
208Au79129207.99366(32)#20# s
[>300 ns]
β?208Hg6+#
β, n?207Hg
209Au79130208.99761(43)#1# s
[>300 ns]
β?209Hg3/2+#
β, n?208Hg
210Au79131210.00288(43)#10# s
[>300 ns]
β?210Hg6+#
β, n?209Hg
This table header & footer:
  1. mAu  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    p: Proton emission
  6. Bold italics symbol as daughter  Daughter product is nearly stable.
  7. Bold symbol as daughter  Daughter product is stable.
  8. () spin value  Indicates spin with weak assignment arguments.
  9. 1 2 3 4 Order of ground state and isomer is uncertain.
  10. Potential material for salted bombs
  11. Theoretically predicted to undergo α decay to 193Ir

See also

Daughter products other than gold

References

  1. 1 2 3 4 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Gold". CIAAW. 2017.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (8): 140–1–140–7. arXiv: 1908.11458 . Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. ISSN   1434-601X. S2CID   201664098.
  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. Hilton, Joshua Ben. "Decays of new nuclides 169Au, 170Hg, 165Pt and the ground state of 165Ir discovered using MARA" (PDF). University of Liverpool. Retrieved 11 June 2023.
  7. 1 2 3 4 Kettunen, H.; Enqvist, T.; Grahn, T.; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Keenan, A.; Kuusiniemi, P.; Leino, M.; Leppänen, A.-P.; Nieminen, P.; Pakarinen, J.; Rahkila, P.; Uusitalo, J. (28 May 2004). "Decay studies of Au 170 , 171 , Hg 171 – 173 , and Tl 176" . Physical Review C. 69 (5): 054323. doi:10.1103/PhysRevC.69.054323. ISSN   0556-2813 . Retrieved 11 June 2023.