Gold-198

Last updated
Gold-198, 198Au
Gold-198.svg
General
Symbol 198Au
Names gold-198, 198Au, Au-198
Protons (Z)79
Neutrons (N)119
Nuclide data
Half-life (t1/2)2.69464 d [1]
Isotope mass 197.9682437 [2] Da
Spin 2−
Decay products 198Hg
Decay modes
Decay mode Decay energy (MeV)
β 1.3735 [2]
Isotopes of gold
Complete table of nuclides
Decay scheme of Au to Hg. Au198.svg
Decay scheme of Au to Hg.

Gold-198 (198Au) is a radioactive isotope of gold. It undergoes beta decay to stable 198 Hg with a half-life of 2.69464 days.

Contents

The decay properties of 198Au have led to widespread interest in its potential use in radiotherapy for cancer treatments. This isotope has also found use in nuclear weapons research and as a radioactive tracer in hydrological research.

Discovery

198Au was possibly observed for the first time in 1935 by Enrico Fermi et al., though it was not correctly identified at the time. This isotope was conclusively identified in 1937 following neutron irradiation of stable 197Au and was ascribed a half-life of approximately 2.7 days. [3]

Applications

Nuclear medicine

198Au is used for radiotherapy in some cancer treatments. [4] [5] Its half-life and beta decay energy are favorable for use in medicine because its 4  mm penetration range in tissue allows it to destroy tumors without nearby non-cancerous tissue being affected by radiation. [6] For this reason, 198Au nanoparticles are being investigated as an injectable treatment for prostate cancer. [6] [7]

Radioactive tracing

Sediment and water flow can be investigated using radioactive tracers such as 198Au. This has been used extensively since artificial radioisotopes became available in the 1950s, as a supplement to millennia of investigations using other tracing techniques. [8]

Inside coker units at oil refineries, 198Au is used to study the hydrodynamic behavior of solids in fluidized beds and can also be used to quantify the degree of fouling of bed internals. [9]

Nuclear weapons

Gold has been proposed as a material for creating a salted nuclear weapon (cobalt is another, better-known salting material). A jacket of natural 197
Au
(the only stable gold isotope), irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope 198Au with a half-life of 2.697 days and produce approximately 0.411  MeV of gamma radiation, significantly increasing the radioactivity of the weapon's fallout for several days. Such a weapon is not known to have ever been built, tested, or used. [10]

The highest amount of 198Au detected in any United States nuclear test was in shot "Sedan" detonated at Nevada Test Site on July 6, 1962. [11]

See also

Related Research Articles

Lead (82Pb) has four observationally stable isotopes: 204Pb, 206Pb, 207Pb, 208Pb. Lead-204 is entirely a primordial nuclide and is not a radiogenic nuclide. The three isotopes lead-206, lead-207, and lead-208 represent the ends of three decay chains: the uranium series, the actinium series, and the thorium series, respectively; a fourth decay chain, the neptunium series, terminates with the thallium isotope 205Tl. The three series terminating in lead represent the decay chain products of long-lived primordial 238U, 235U, and 232Th. Each isotope also occurs, to some extent, as primordial isotopes that were made in supernovae, rather than radiogenically as daughter products. The fixed ratio of lead-204 to the primordial amounts of the other lead isotopes may be used as the baseline to estimate the extra amounts of radiogenic lead present in rocks as a result of decay from uranium and thorium.

Bismuth (83Bi) has 41 known isotopes, ranging from 184Bi to 224Bi. Bismuth has no stable isotopes, but does have one very long-lived isotope; thus, the standard atomic weight can be given as 208.98040(1). Although bismuth-209 is now known to be radioactive, it has classically been considered to be a stable isotope because it has a half-life of approximately 2.01×1019 years, which is more than a billion times the age of the universe. Besides 209Bi, the most stable bismuth radioisotopes are 210mBi with a half-life of 3.04 million years, 208Bi with a half-life of 368,000 years and 207Bi, with a half-life of 32.9 years, none of which occurs in nature. All other isotopes have half-lives under 1 year, most under a day. Of naturally occurring radioisotopes, the most stable is radiogenic 210Bi with a half-life of 5.012 days. 210mBi is unusual for being a nuclear isomer with a half-life multiple orders of magnitude longer than that of the ground state.

<span class="mw-page-title-main">Isotopes of thallium</span> Nuclides with atomic number of 81 but with different mass numbers

Thallium (81Tl) has 41 isotopes with atomic masses that range from 176 to 216. 203Tl and 205Tl are the only stable isotopes and 204Tl is the most stable radioisotope with a half-life of 3.78 years. 207Tl, with a half-life of 4.77 minutes, has the longest half-life of naturally occurring Tl radioisotopes. All isotopes of thallium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

There are two natural isotopes of iridium (77Ir), and 37 radioisotopes, the most stable radioisotope being 192Ir with a half-life of 73.83 days, and many nuclear isomers, the most stable of which is 192m2Ir with a half-life of 241 years. All other isomers have half-lives under a year, most under a day. All isotopes of iridium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Naturally occurring erbium (68Er) is composed of 6 stable isotopes, with 166Er being the most abundant. 39 radioisotopes have been characterized with between 74 and 112 neutrons, or 142 to 180 nucleons, with the most stable being 169Er with a half-life of 9.4 days, 172Er with a half-life of 49.3 hours, 160Er with a half-life of 28.58 hours, 165Er with a half-life of 10.36 hours, and 171Er with a half-life of 7.516 hours. All of the remaining radioactive isotopes have half-lives that are less than 3.5 hours, and the majority of these have half-lives that are less than 4 minutes. This element also has numerous meta states, with the most stable being 167mEr.

Naturally occurring barium (56Ba) is a mix of six stable isotopes and one very long-lived radioactive primordial isotope, barium-130, identified as being unstable by geochemical means (from analysis of the presence of its daughter xenon-130 in rocks) in 2001. This nuclide decays by double electron capture (absorbing two electrons and emitting two neutrinos), with a half-life of (0.5–2.7)×1021 years (about 1011 times the age of the universe).

Naturally occurring silver (47Ag) is composed of the two stable isotopes 107Ag and 109Ag in almost equal proportions, with 107Ag being slightly more abundant. Notably, silver is the only element with all stable istopes having nuclear spins of 1/2. Thus both 107Ag and 109Ag nuclei produce narrow lines in nuclear magnetic resonance spectra.

Bromine (35Br) has two stable isotopes, 79Br and 81Br, and 32 known radioisotopes, the most stable of which is 77Br, with a half-life of 57.036 hours.

Naturally occurring cobalt (27Co) consists of a single stable isotope, 59Co. Twenty-eight radioisotopes have been characterized; the most stable are 60Co with a half-life of 5.2714 years, 57Co, 56Co, and 58Co. All other isotopes have half-lives of less than 18 hours and most of these have half-lives of less than 1 second. This element also has 11 meta states, all of which have half-lives of less than 15 minutes.

Potassium has 26 known isotopes from 31
K
to 57
K
, with the exception of still-unknown 32
K
, as well as an unconfirmed report of 59
K
. Three of those isotopes occur naturally: the two stable forms 39
K
(93.3%) and 41
K
(6.7%), and a very long-lived radioisotope 40
K
(0.012%)

Argon (18Ar) has 26 known isotopes, from 29Ar to 54Ar and 1 isomer (32mAr), of which three are stable. On the Earth, 40Ar makes up 99.6% of natural argon. The longest-lived radioactive isotopes are 39Ar with a half-life of 268 years, 42Ar with a half-life of 32.9 years, and 37Ar with a half-life of 35.04 days. All other isotopes have half-lives of less than two hours, and most less than one minute. The least stable is 29Ar with a half-life of approximately 4×10−20 seconds.

Chlorine (17Cl) has 25 isotopes, ranging from 28Cl to 52Cl, and two isomers, 34mCl and 38mCl. There are two stable isotopes, 35Cl (75.8%) and 37Cl (24.2%), giving chlorine a standard atomic weight of 35.45. The longest-lived radioactive isotope is 36Cl, which has a half-life of 301,000 years. All other isotopes have half-lives under 1 hour, many less than one second. The shortest-lived are proton-unbound 29Cl and 30Cl, with half-lives less than 10 picoseconds and 30 nanoseconds, respectively; the half-life of 28Cl is unknown.

Although phosphorus (15P) has 22 isotopes from 26P to 47P, only 31P is stable; as such, phosphorus is considered a monoisotopic element. The longest-lived radioactive isotopes are 33P with a half-life of 25.34 days and 32P with a half-life of 14.268 days. All others have half-lives of under 2.5 minutes, most under a second. The least stable known isotope is 47P, with a half-life of 2 milliseconds.

Sulfur (16S) has 23 known isotopes with mass numbers ranging from 27 to 49, four of which are stable: 32S (95.02%), 33S (0.75%), 34S (4.21%), and 36S (0.02%). The preponderance of sulfur-32 is explained by its production from carbon-12 plus successive fusion capture of five helium-4 nuclei, in the so-called alpha process of exploding type II supernovas.

Aluminium or aluminum (13Al) has 22 known isotopes from 22Al to 43Al and 4 known isomers. Only 27Al (stable isotope) and 26Al (radioactive isotope, t1/2 = 7.2×105 y) occur naturally, however 27Al comprises nearly all natural aluminium. Other than 26Al, all radioisotopes have half-lives under 7 minutes, most under a second. The standard atomic weight is 26.9815385(7). 26Al is produced from argon in the atmosphere by spallation caused by cosmic-ray protons. Aluminium isotopes have found practical application in dating marine sediments, manganese nodules, glacial ice, quartz in rock exposures, and meteorites. The ratio of 26Al to 10Be has been used to study the role of sediment transport, deposition, and storage, as well as burial times, and erosion, on 105 to 106 year time scales. 26Al has also played a significant role in the study of meteorites.

<span class="mw-page-title-main">Isotopes of magnesium</span> Nuclides with atomic number of 12 but with different mass numbers

Magnesium (12Mg) naturally occurs in three stable isotopes: 24
Mg
, 25
Mg
, and 26
Mg
. There are 19 radioisotopes that have been discovered, ranging from 18
Mg
to 40
Mg
. The longest-lived radioisotope is 28
Mg
with a half-life of 20.915(9) h. The lighter isotopes mostly decay to isotopes of sodium while the heavier isotopes decay to isotopes of aluminium. The shortest-lived is proton-unbound 18
Mg
with a half-life of 4.0(3.4) zeptoseconds.

Neptunium (93Np) is usually considered an artificial element, although trace quantities are found in nature, so a standard atomic weight cannot be given. Like all trace or artificial elements, it has no stable isotopes. The first isotope to be synthesized and identified was 239Np in 1940, produced by bombarding 238
U
with neutrons to produce 239
U
, which then underwent beta decay to 239
Np
.

Iodine-129 (129I) is a long-lived radioisotope of iodine that occurs naturally but is also of special interest in the monitoring and effects of man-made nuclear fission products, where it serves as both a tracer and a potential radiological contaminant.

Indium-111 (111In) is a radioactive isotope of indium (In). It decays by electron capture to stable cadmium-111 with a half-life of 2.8 days. Indium-111 chloride (111InCl) solution is produced by proton irradiation of a cadmium target in a cyclotron, as recommended by International Atomic Energy Agency (IAEA). The former method is more commonly used as it results in a high level of radionuclide purity.

A radioactive nanoparticle is a nanoparticle that contains radioactive materials. Radioactive nanoparticles have applications in medical diagnostics, medical imaging, toxicokinetics, and environmental health, and are being investigated for applications in nuclear nanomedicine. Radioactive nanoparticles present special challenges in operational health physics and internal dosimetry that are not present for other substances, although existing radiation protection measures and hazard controls for nanoparticles generally apply.

References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 139. doi:10.1088/1674-1137/abddae.
  2. 1 2 Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
  3. Schuh, A.; Fritsch, A.; Ginepro, J.Q.; Heim, M.; Shore, A.; Thoennessen, M. (2010). "Discovery of the gold isotopes" (PDF). Atomic Data and Nuclear Data Tables . 96 (3): 307–314. arXiv: 0903.1797 . Bibcode:2010ADNDT..96..307S. doi:10.1016/j.adt.2009.12.001. S2CID   98691829.
  4. "Nanoscience and Nanotechnology in Nanomedicine: Hybrid Nanoparticles In Imaging and Therapy of Prostate Cancer". Radiopharmaceutical Sciences Institute, University of Missouri-Columbia. Archived from the original on March 14, 2009.
  5. Hainfeld, James F.; Dilmanian, F. Avraham; Slatkin, Daniel N.; Smilowitz, Henry M. (2008). "Radiotherapy enhancement with gold nanoparticles". Journal of Pharmacy and Pharmacology. 60 (8): 977–85. doi: 10.1211/jpp.60.8.0005 . PMID   18644191. S2CID   32861131.
  6. 1 2 Katti, K.V.; Khoobchandanai, M.; Al-Yasiri, A.; Katti, K.K.; Cutler, C.; Loyalka, S.K. (2017). Radioactive Gold-198 Nanoparticles In Nanomedicine: Green Nanotechnology and Radiochemical Approaches in Oncology. 6th Asia-Pacific Symposium on Radiochemistry. Jeju.
  7. "Green Tea and Gold Nanoparticles Destroy Prostate Tumors". 2012.
  8. Plata-Bedmar, A. (1988). Artificial radioisotopes in hydrological investigation: A review of specific applications (PDF) (Report). Topical reports. IAEA Bulletin. pp. 35–38.
  9. Sanchez, Francisco J.; Granovskiy, Mikhail (2012). "Application of radioactive particle tracking to indicate shed fouling in the stripper section of a fluid coker". Canadian Journal of Chemical Engineering. 91 (6): 1175–1182. doi:10.1002/cjce.21740.
  10. D. T. Win; M. Al Masum (2003). "Weapons of Mass Destruction" (PDF). Assumption University Journal of Technology. 6 (4): 199–219.
  11. R. L. Miller (2002). U.S. Atlas of Nuclear Fallout, 1951–1970. Vol. 1 (Abridged General Reader ed.). Two Sixty Press. p. 340. ISBN   978-1-881043-13-3.