Isotopes of niobium

Last updated

Isotopes of niobium  (41Nb)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
91Nb synth 680 y β+ 91Zr
91mNbsynth60.86 d IT 91Nb
β+ 91Zr
92Nb trace 3.47×107 yβ+ 92Zr
93Nb100% stable
93mNbsynth16.12 yIT 93Nb
94Nbtrace2.04×104 y β 94Mo
95Nbsynth34.991 dβ 95Mo
Standard atomic weight Ar°(Nb)

Naturally occurring niobium (41Nb) is composed of one stable isotope (93Nb). The most stable radioisotope is 92Nb with a half-life of 34.7 million years. The next longest-lived niobium isotopes are 94Nb (half-life: 20,300 years) and 91Nb with a half-life of 680 years. There is also a meta state of 93Nb at 31 keV whose half-life is 16.13 years. Twenty-seven other radioisotopes have been characterized. Most of these have half-lives that are less than two hours, except 95Nb (35 days), 96Nb (23.4 hours) and 90Nb (14.6 hours). The primary decay mode before stable 93Nb is electron capture and the primary mode after is beta emission with some neutron emission occurring in 104–110Nb.

Contents

Only 95Nb (35 days) and 97Nb (72 minutes) and heavier isotopes (half-lives in seconds) are fission products in significant quantity, as the other isotopes are shadowed by stable or very long-lived (93Zr) isotopes of the preceding element zirconium from production via beta decay of neutron-rich fission fragments. 95Nb is the decay product of 95Zr (64 days), so disappearance of 95Nb in used nuclear fuel is slower than would be expected from its own 35-day half-life alone. Small amounts of other isotopes may be produced as direct fission products.

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [4]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6] [n 7]
Spin and
parity [1]
[n 8] [n 4]
Isotopic
abundance
Excitation energy [n 4]
82Nb414181.94438(32)51(5) ms β+ 82Zr(0+)
82mNb1180(1) keV93(20) ns IT 82Nb(5+)
83Nb414282.93815(17)3.9(2) sβ+83Zr9/2+#
84Nb414383.93430571(43)9.8(9) sβ+84Zr(1+)
84m1Nb48(1) keV176(46) nsIT84Nb(3+)
84m2Nb337.7(4) keV92(5) nsIT84Nb(5−)
85Nb414484.9288458(44)20.5(7) sβ+85Zr9/2+#
85mNb150(80)# keV3.3(9) sIT (?%)85Nb(1/2−)
β+ (?%)85Zr
86Nb414585.9257815(59)88(1) sβ+86Zr(6+)
86mNb [n 9] 150(100)# keV20# sβ+86Zr(0−,1−,2−)
87Nb414686.9206925(73)3.7(1) minβ+87Zr(1/2)−
87mNb3.9(1) keV2.6(1) minβ+87Zr(9/2)+
88Nb414787.918226(62)14.50(11) minβ+88Zr(8+)
88mNb [n 9] 130(120) keV7.7(1) minβ+88Zr(4−)
89Nb414888.913445(25)2.03(7) hβ+89Zr(9/2+)
89mNb [n 9] 0(30)# keV1.10(3) hβ+89Zr(1/2)−
90Nb414989.9112592(36)14.60(5) hβ+90Zr8+
90m1Nb122.370(22) keV63(2) μsIT90Nb6+
90m2Nb124.67(25) keV18.81(6) sIT90Nb4-
90m3Nb171.10(10) keV<1 μsIT90Nb7+
90m4Nb382.01(25) keV6.19(8) msIT90m1Nb1+
90m5Nb1880.21(20) keV471(6) nsIT90Nb(11−)
91Nb415090.9069903(31)680(130) y EC (99.99%)91Zr9/2+
β+ (0.0138%)
91m1Nb104.60(5) keV60.86(22) dIT (96.6%)91Nb1/2−
EC (3.4%)91Zr
β+ (.0028%)
91m2Nb2034.42(20) keV3.76(12) μsIT91Nb(17/2−)
92Nb415191.9071886(19)3.47(24)×107 yβ+92Zr7+Trace
92m1Nb135.5(4) keV10.116(13) dβ+92Zr(2)+
92m2Nb225.8(4) keV5.9(2) μsIT92Nb(2)−
92m3Nb2203.3(4) keV167(4) nsIT92Nb(11−)
93Nb415292.9063732(16)Stable9/2+1.0000
93m1Nb30.760(5) keV16.12(12) yIT93Nb1/2−
93m2Nb7460(17) keV1.5(5) μsIT93Nb33/2−#
94Nb415393.9072790(16)2.04(4)×104 yβ94Mo6+Trace
94mNb40.892(12) keV6.263(4) minIT (99.50%)94Nb3+
β (0.50%)94Mo
95Nb415494.90683111(55)34.991(6) dβ95Mo9/2+
95mNb235.69(2) keV3.61(3) dIT (94.4%)95Nb1/2−
β (5.6%)95Mo
96Nb415595.90810159(16)23.35(5) hβ96Mo6+
97Nb415696.9081016(46)72.1(7) minβ97Mo9/2+
97mNb743.35(3) keV58.7(18) sIT97Nb1/2−
98Nb415797.9103326(54)2.86(6) sβ98Mo1+
98mNb84(4) keV51.1(4) minβ98Mo(5)+
99Nb415898.911609(13)15.0(2) sβ99Mo9/2+
99mNb365.27(8) keV2.5(2) minβ (?%)99Mo1/2−
IT (?%)99Nb
100Nb415999.9143406(86)1.5(2) sβ100Mo1+
100m1Nb313(8) keV2.99(11) sβ100Mo(5+)
100m2Nb347(8) keV460(60) nsIT100Nb(4−,5−)
100m3Nb734(8) keV12.43(26) μsIT100Nb(8−)
101Nb4160100.9153065(40)7.1(3) sβ101Mo5/2+
102Nb4161101.9180904(27)4.3(4) sβ102Mo(4+)
102mNb94(7) keV1.31(16) sβ102Mo(1+)
103Nb4162102.9194534(42)1.34(7) sβ103Mo5/2+
104Nb4163103.9229077(19)0.98(5) sβ (99.95%)104Mo(1+)
β, n (0.05%)103Mo
104mNb [n 9] 9.8(26) keV4.9(3) sβ (99.94%)104Mo(0−,1−)
β, n (0.06%)103Mo
105Nb4164104.9249426(43)2.91(5) sβ (98.3%)105Mo(5/2+)
β, n (1.7%)104Mo
106Nb4165105.9289285(15)900(20) msβ (95.5%)106Mo1−#
β, n (4.5%)105Mo
106m1Nb100(50)# keV1.20(6) sβ106Mo(4−)
106m2Nb204.8(5) keV820(38) nsIT106Nb(3+)
107Nb4166106.9315897(86)286(8) msβ (92.6%)107Mo(5/2+)
β, n (7.4%)106Mo
108Nb4167107.9360756(88)201(4) msβ (93.7%)108Mo(2+)
β, n (6.3%)107Mo
108mNb166.6(5) keV109(2) nsIT109Nb6−#
109Nb4168108.93914(46)106.9(49) msβ (69%)109Mo3/2−#
β, n (31%)108Mo
109mNb312.5(4) keV115(8) nsIT109Nb7/2+#
110Nb4169109.94384(90)75(1) msβ (60%)110Mo5+#
β, n (40%)109Mo
110mNb [n 9] 100(50)# keV94(9) msβ (60%)104Mo2+#
β, n (40%)103Mo
111Nb4170110.94744(32)#54(2) msβ111Mo3/2−#
112Nb4171111.95269(32)#38(2) msβ112Mo1+#
113Nb4172112.95683(43)#32(4) msβ113Mo3/2−#
114Nb4173113.96247(54)#17(5) msβ114Mo2−#
115Nb4174114.96685(54)#23(8) msβ115Mo3/2−#
116Nb4175115.97291(32)#12# ms
[>550 ns]
1−#
117Nb [5] 4176
This table header & footer:
  1. mNb  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold italics symbol as daughter  Daughter product is nearly stable.
  7. Bold symbol as daughter  Daughter product is stable.
  8. () spin value  Indicates spin with weak assignment arguments.
  9. 1 2 3 4 5 Order of ground state and isomer is uncertain.

Niobium-92

Niobium-92 is an extinct radionuclide [6] with a half-life of 34.7 million years, decaying predominantly via β+ decay. Its abundance relative to the stable 93Nb in the early Solar System, estimated at 1.7×10−5, has been measured to investigate the origin of p-nuclei. [6] [7] A higher initial abundance of 92Nb has been estimated for material in the outer protosolar disk (sampled from the meteorite NWA 6704), suggesting that this nuclide was predominantly formed via the gamma process (photodisintegration) in a nearby core-collapse supernova. [8]

Niobium-92, along with niobium-94, has been detected in refined samples of terrestrial niobium and may originate from bombardment by cosmic ray muons in Earth's crust. [9]

References

  1. 1 2 3 4 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Niobium". CIAAW. 2017.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl: 10261/260248 . S2CID   234019083.
  6. 1 2 Iizuka, Tsuyoshi; Lai, Yi-Jen; Akram, Waheed; Amelin, Yuri; Schönbächler, Maria (2016). "The initial abundance and distribution of 92Nb in the Solar System". Earth and Planetary Science Letters. 439: 172–181. arXiv: 1602.00966 . Bibcode:2016E&PSL.439..172I. doi:10.1016/j.epsl.2016.02.005. S2CID   119299654.
  7. Hibiya, Y; Iizuka, T; Enomoto, H (2019). THE INITIAL ABUNDANCE OF NIOBIUM-92 IN THE OUTER SOLAR SYSTEM (PDF). Lunar and Planetary Science Conference (50th ed.). Retrieved 7 September 2019.
  8. Hibiya, Y.; Iizuka, T.; Enomoto, H.; Hayakawa, T. (2023). "Evidence for enrichment of niobium-92 in the outer protosolar disk". Astrophysical Journal Letters. 942 (L15): L15. Bibcode:2023ApJ...942L..15H. doi: 10.3847/2041-8213/acab5d . S2CID   255414098.
  9. Clayton, Donald D.; Morgan, John A. (1977). "Muon production of 92,94Nb in the Earth's crust". Nature. 266 (5604): 712–713. doi:10.1038/266712a0. S2CID   4292459.