Isotopes of thallium

Last updated

Isotopes of thallium  (81Tl)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
201Tl synth 3.0421 d ε 201Hg
202Tlsynth12.31 d β+ 202Hg
203Tl29.5% stable
204Tlsynth3.78 y β 204Pb
ε204Hg
205Tl70.5%stable
Standard atomic weight Ar°(Tl)

The only stable isotopes of thallium (81Tl) are 203Tl and 205Tl, which make up all natural thallium. The five short-lived isotopes 206Tl through 210Tl also occur in nature, but only as part of the natural decay chains of heavier elements. Synthetic radioisotopes are known from 176Tl to 217Tl; the most stable is 204Tl with a half-life of 3.78 years, followed by 202Tl (half-life 12.31 days) and 201Tl (half-life 3.0421 days). The naturally-occurring radioisotopes live minutes only, with the longest being 207Tl, with a half-life of 4.77 minutes. All isotopes of thallium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Contents

The isotope 204Tl is made by the neutron activation of stable thallium in a nuclear reactor. [4] while 202Tl can be made in a cyclotron [5] as can 201Tl (see section below).

In the fully ionized state, the isotope 205Tl81+ becomes unstable, undergoing bound-state β decay to 205Pb81+ with a half-life of 291+33
−27
days, [6] [7] but 203Tl remains stable.

205Tl is the decay product of bismuth-209, an isotope that was once thought to be stable but is now known to undergo alpha decay with an extremely long half-life of 2.01×1019 y. [8] Thus 205Tl is now placed at the end of the neptunium decay chain.

The neptunium decay chain, ending at Tl. Decay Chain(4n+1, Neptunium Series).svg
The neptunium decay chain, ending at Tl.

List of isotopes


Nuclide
[n 1]
Historic
name
Z N Isotopic mass (Da) [9]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity [1]
[n 7] [n 4]
Natural abundance (mole fraction)
Excitation energy [n 4] Normal proportion [1] Range of variation
176Tl [10] 8195176.000628(89)2.4+1.6
−0.7
 ms
p (50%)175Hg(3−,4−)
α (50%)172Au
176mTl671 keV290+200
−80
 μs
p (50%)175Hg
α (50%)172mAu
177Tl8196176.996414(23)18(5) msα (73%)173Au(1/2+)
p (27%)176Hg
177mTl807(18) keV230(40) μsp (51%)176Hg(11/2−)
α (49%)173Au
178Tl8197177.99505(11)#255(9) msα (62%)174Au(4-,5-)
β+ (38%)178Hg
β+, SF (0.15%)(various)
179Tl8198178.991122(41)437(9) msα (60%)175Au1/2+
β+ (40%)179Hg
179m1Tl825(10)# keV1.41(2) msα175Au(11/2−)
179m2Tl904.5(9) keV119(14) nsIT179Tl(9/2−)
180Tl8199179.989919(75)1.09(1) sβ+ (93%)180Hg(4-)
α (7%)176Au
β+, SF (0.0032%)(various)
181Tl81100180.9862600(98)2.9(1) sβ+ (91.4%)181Hg1/2+
α (8.6%)177Au
181mTl835.9(4) keV1.40(3) msIT (99.60%)181Tl(9/2−)
α (0.40%)177Au
182Tl81101181.985693(13)1.9(1) sβ+ (<99.41%)182Hg(4−)
α (>0.49%)178Au
β+, SF (<3.4×10−6%)182Hg
182mTl [n 8] 50(50)# keV3.1(10) sβ+ (97.5%)182Hg(7+)
α (2.5%)178Au
183Tl81102182.982193(10)6.9(7) sβ+ (?%)183Hg1/2+
α (?%)179Au
183m1Tl628.7(5) keV53.3(3) msIT (?%)183Tl(9/2−)
α (1.5%)179Au
β+ (?%)183Hg
183m2Tl975.3(6) keV1.48(10) μsIT183Tl(13/2+)
184Tl81103183.981875(11)9.5(2) sβ+ (98.78%)184Hg2−
α (1.22%)180Au
184m1Tl [n 8] −50(30) keV10.6(5) sβ+ (99.53%)184Hg(7+)
α (0.47%)180Au
184m2Tl450(30) keV47.1(7) msIT (99.91%)(10−)
α (0.089%)180Au
185Tl81104184.978789(22)19.5(5) sβ+185Hg1/2+
185mTl454.8(15) keV1.93(8) sIT185Tl9/2−
α (?%)181Au
186Tl81105185.978655(22)3.5(5) sβ+ (?%)186Hg(2−)
α (?%)182Au
186m1Tl [n 8] 20(40) keV27.5(10) sβ+ (99.99%)186Hg7+
α (0.006%)182Au
186m2Tl390(40) keV3.40(9) sIT (<94.1%)186Tl10−
β+ (>5.9%)186Hg
187Tl81106186.9759047(86)~51 sβ+187Hg1/2+
187m1Tl334(3) keV15.60(12) sβ+ (?%)187Hg9/2−
IT (?%)187Tl
α (0.15%)183Au
187m2Tl1875(50)# keV1.11(7) μsIT187Tl
187m3Tl2582.5(3) keV693(38) nsIT187Tl29/2+#
188Tl81107187.976021(32)71(2) sβ+188Hg2−#
188m1Tl [n 8] 30(30) keV71.5(15) sβ+188Hg7+
188m2Tl299(30) keV41(4) msIT188Tl9−
189Tl81108188.9735735(90)2.3(2) minβ+189Hg1/2+
189mTl285(6) keV1.4(1) minβ+189Hg9/2−
190Tl81109189.9738418(78)2.6(3) minβ+190Hg2−
190m1Tl70(7) keV3.6(3) minβ+190Hg7+
190m2Tl306(10) keV60# msIT190Tl(9−)
191Tl81110190.9717841(79)20# minβ+191Hg1/2+
191mTl297(7) keV5.22(16) minβ+191Hg9/2−
192Tl81111191.972225(34)9.6(4) minβ+192Hg2−
192m1Tl196(7) keV10.8(2) minβ+192Hg7+
192m2Tl447(7) keV296(5) nsIT192Tl(8−)
192m3Tl180(40) keVα188Au(3+)
193Tl81112192.9705020(72)21.6(8) minβ+193Hg1/2+
193mTl372(4) keV2.11(15) minIT (~75%)193Tl9/2−
β+ (~25%)193Hg
194Tl81113193.971081(15)33.0(5) minβ+194Hg2−
194mTl260(14) keV32.8(2) minβ+194Hg7+
195Tl81114194.969774(12)1.16(5) hβ+195Hg1/2+
195mTl482.63(17) keV3.6(4) sIT195Tl9/2−
196Tl81115195.970481(13)1.84(3) hβ+196Hg2−
196mTl394.2(5) keV1.41(2) hβ+ (96.2%)196Hg7+
IT (3.8%)196Tl
197Tl81116196.969560(15)2.84(4) hβ+197Hg1/2+
197mTl608.22(8) keV540(10) msIT197Tl9/2−
198Tl81117197.9704467(81)5.3(5) hβ+198Hg2−
198m1Tl543.6(4) keV1.87(3) hβ+ (55.9%)198Hg7+
IT (44.1%)198Tl
198m2Tl686.8(5) keV150(40) nsIT198Tl(5)+
198m3Tl742.4(4) keV32.1(10) msIT198Tl10−
199Tl81118198.969877(30)7.42(8) hβ+199Hg1/2+
199mTl748.87(6) keV28.4(2) msIT199Tl9/2−
200Tl81119199.9709636(62)26.1(1) hβ+200Hg2−
200m1Tl753.60(24) keV34.0(9) msIT200Tl7+
200m2Tl762.00(24) keV397(17) nsIT200Tl5+
201Tl [n 9] 81120200.970820(15)3.0421(8) dEC201Hg1/2+
201mTl919.16(21) keV2.01(7) msIT201Tl9/2−
202Tl81121201.9721089(20)12.31(8) dEC202Hg2−
202mTl950.19(10) keV591(3) μsIT202Tl7+
203Tl81122202.9723441(13) Observationally Stable [n 10] 1/2+0.29515(44)
203m1Tl1483.7(9) keV<1 μsIT203Tl(9/2−)
203m2Tl3565(50)# keV7.7(5) μsIT203Tl(25/2+)
204Tl81123203.9738634(12)3.783(12) yβ (97.08%)204Pb2−
EC (2.92%)204Hg
204m1Tl1104.1(2) keV61.7(10) μsIT204Tl7+
204m2Tl2319.0(3) keV2.6(2) μsIT204Tl12−
204m3Tl4391.6(5) keV420(30) nsIT204Tl18+
204m4Tl6239.4(5) keV90(3) nsIT204Tl22−
205Tl [n 11] 81124204.9744273(13)Observationally Stable [n 12] [n 13] 1/2+0.70485(44)
205m1Tl3290.61(17) keV2.6(2) μsIT205Tl25/2+
205m2Tl4835.6(15) keV235(10) nsIT205Tl(35/2–)
206TlRadium E"81125205.9761101(14)4.202(11) minβ206Pb0−Trace [n 14]
206mTl2643.10(18) keV3.74(3) minIT206Tl(12)–
207TlActinium C"81126206.9774186(58)4.77(2) minβ207Pb1/2+Trace [n 15]
207mTl1348.18(16) keV1.33(11) sIT207Tl11/2–
208TlThorium C"81127207.9820180(20)3.053(4) minβ208Pb5+Trace [n 16]
208mTl1807(1) keV1.3(1) μsIT208Tl(0–)
209Tl81128208.9853517(66)2.162(7) minβ209Pb1/2+Trace [n 17]
209mTl1228.1(20) keV146(10) nsIT209Tl17/2+
210TlRadium C″81129209.990073(12)1.30(3) minβ (99.99%)210Pb5+#Trace [n 14]
β, n (0.009%)209Pb
210mTl1200(200)# keV1# min
[>3 μs]
(9+,10+)
211Tl81130210.993475(45)81(16) sβ (97.8%)211Pb1/2+
β, n (2.2%)210Pb
211mTl1244(100)# keV580(80) nsIT211Tl17/2+#
212Tl81131211.99834(22)#31(8) sβ (98.2%)212Pb(5+)
β, n (1.8%)211Pb
213Tl81132213.001915(29)23.8(44) sβ (92.4%)213Pb1/2+#
β, n (7.6%)212Pb
213m1Tl680(300)# keV4.1(5) μsIT213Tl
213m2Tl1250(100)# keV0.6(3) μsIT213Tl17/2+#
214Tl81133214.00694(21)#11.0(24) sβ (66%)214Pb5+#
β, n (34%)213Pb
215Tl81134215.01077(32)#9.7(38) sβ (95.4%)215Pb1/2+#
β, n (4.6%)214Pb
216Tl81135216.01596(32)#5.9(33) sβ (>88.5%)216Pb5+#
β, n (<11.5%)215Pb
217Tl81136217.02003(43)#2# s
[>300 ns]
1/2+#
This table header & footer:
  1. mTl  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    α: Alpha decay
    β+: Positron emission
    EC: Electron capture
    β: Beta decay
    IT: Isomeric transition
    SF: Spontaneous fission
    n: Neutron emission
    p: Proton emission
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. 1 2 3 4 Order of ground state and isomer is uncertain.
  9. Main isotope used in scintigraphy
  10. Believed to undergo α decay to 199Au
  11. Final decay product of 4n+1 decay chain (the Neptunium series)
  12. Believed to undergo α decay to 201Au
  13. Can undergo bound-state β decay to 205Pb81+ with a half-life of 291+33
    −27
    days when fully ionized [7]
  14. 1 2 Intermediate decay product of 238U
  15. Intermediate decay product of 235U
  16. Intermediate decay product of 232Th
  17. Intermediate decay product of 237Np

Thallium-201

Thallium-201 (201Tl) is a synthetic radioisotope of thallium. It has a half-life of 3.0421 days and decays by electron capture, emitting photons consisting mainly of K X-rays (~70–80 keV), and gammas of 135 and 167 keV (the latter stronger, emitted in 10% of decays). [11] Thallium-201 is synthesized by the neutron activation of stable thallium in a nuclear reactor, [12] or by the 203Tl(p, 3n)201Pb nuclear reaction in cyclotrons, as 201Pb then decays to 201Tl. [13] It is a radiopharmaceutical, as it has fair imaging characteristics without excessive patient radiation dose. It was the most popular isotope used for nuclear cardiac stress tests. [14]

This nuclide has largely been replaced by technetium-99m, which has a shorter half-life (6 hours instead of 3 days) and a single high-energy photon peak (140 keV), which is better for imaging than the 3 energy peaks of thallium-201. Thallium-201 is now mostly used for myocardial viability studies. It will redistribute in body tissues, whereas Tc will not; Tl is taken up by the cardiac muscle via Na+/K+ pumps. Delayed imaging will show uptake in damaged but still living myocardial cells, which would appear as a scar with Tc or Rb-82.

See also

Daughter products other than thallium

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Thallium". CIAAW. 2009.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Manual for reactor produced radioisotopes from the International Atomic Energy Agency
  5. "Thallium Research". doe.gov. Department of Energy. Archived from the original on 2006-12-09. Retrieved 23 March 2018.
  6. "Bound-state beta decay of highly ionized atoms" (PDF). Archived from the original (PDF) on October 29, 2013. Retrieved June 9, 2013.
  7. 1 2 Bai, M.; Blaum, K.; Boev, B.; Bosch, F.; Brandau, C.; Cvetković, V.; Dickel, T.; Dillmann, I.; Dmytriiev, D.; Faestermann, T.; Forstner, O.; Franczak, B.; Geissel, H.; Gernhäuser, R.; Glorius, J.; Griffin, C. J.; Gumberidze, A.; Haettner, E.; Hillenbrand, P.-M.; Kienle, P.; Korten, W.; Kozhuharov, Ch.; Kuzminchuk, N.; Langanke, K.; Litvinov, S.; Menz, E.; Morgenroth, T.; Nociforo, C.; Nolden, F.; Pavićević, M. K.; Petridis, N.; Popp, U.; Purushothaman, S.; Reifarth, R.; Sanjari, M. S.; Scheidenberger, C.; Spillmann, U.; Steck, M.; Stöhlker, Th.; Tanaka, Y. K.; Trassinelli, M.; Trotsenko, S.; Varga, L.; Wang, M.; Weick, H.; Woods, P. J.; Yamaguchi, T.; Zhang, Y. H.; Zhao, J.; Zuber, K.; et al. (E121 Collaboration and LOREX Collaboration) (2 December 2024). "Bound-State Beta Decay of 205Tl81+ Ions and the LOREX Project". Physical Review Letters. 133 (23). American Physical Society: 232701. arXiv: 2501.06029 . doi:10.1103/PhysRevLett.133.232701.
  8. Marcillac, P.; Coron, N.; Dambier, G.; et al. (2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature. 422 (6934): 876–878. Bibcode:2003Natur.422..876D. doi:10.1038/nature01541. PMID   12712201. S2CID   4415582.
  9. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  10. Al-Aqeel, Muneerah Abdullah M. "Decay Spectroscopy of the Thallium Isotopes 176,177Tl". University of Liverpool. ProQuest   2447566201 . Retrieved 21 June 2023.
  11. National Nuclear Data Center. "NuDat 3.0 database". Brookhaven National Laboratory.
  12. "Manual for reactor produced radioisotopes" (PDF). International Atomic Energy Agency. 2003. Archived (PDF) from the original on 2011-05-21. Retrieved 2010-05-13.
  13. Cyclotron Produced Radionuclides: Principles and Practice (PDF). International Atomic Energy Agency. 2008. ISBN   9789201002082 . Retrieved 2022-07-01.
  14. Maddahi, Jamshid; Berman, Daniel (2001). "Detection, Evaluation, and Risk Stratification of Coronary Artery Disease by Thallium-201 Myocardial Perfusion Scintigraphy 155". Cardiac SPECT imaging (2nd ed.). Lippincott Williams & Wilkins. pp. 155–178. ISBN   978-0-7817-2007-6. Archived from the original on 2017-02-22. Retrieved 2016-09-26.