Isotopes of yttrium

Last updated

Isotopes of yttrium  (39Y)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
87Y synth 3.4 d ε 87Sr
γ
88Ysynth106.6 dε 88Sr
γ
89Y100% stable
90Y synth2.7 d β 90Zr
γ
91Ysynth58.5 dβ 91Zr
γ
Standard atomic weight Ar°(Y)

Natural yttrium (39Y) is composed of a single isotope, yttrium-89. The most stable radioisotopes are 88Y, which has a half-life of 106.6 days, and 91Y, with a half-life of 58.51 days. All the other isotopes have half-lives of less than a day, except 87Y, which has a half-life of 79.8 hours, and 90Y, with 64 hours. The dominant decay mode below the stable 89Y is electron capture and the dominant mode after it is beta emission. Isotopes characterized range from 76Y to 109Y.

Contents

In products of [[nuclear fission], 90Y exists in equilibrium with its parent isotope strontium-90.

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [3]
[n 2] [n 3]
Half-life [4]
[n 4]
Decay
mode
[4]
[n 5]
Daughter
isotope

[n 6] [n 7]
Spin and
parity [4]
[n 8] [n 4]
Isotopic
abundance
Excitation energy [n 4]
76Y393775.95894(32)#28(9) ms β+?76Sr1−#
p?75Sr
β+, p?75Rb
77Y393876.95015(22)#63(17) msβ+77Sr5/2+#
p?76Sr
β+, p?76Rb
78Y393977.94399(32)#54(5) msβ+78Sr(0+)
β+, p?77Rb
78mY [n 9] 0(500)# keV5.8(6) sβ+78Sr(5+)
β+, p?77Rb
79Y394078.937946(86)14.8(6) sβ+79Sr5/2+#
80Y394179.9343548(67)30.1(5) sβ+80Sr4−
80m1Y228.5(1) keV4.8(3) s IT (81%)80Y1−
β+ (19%)80Sr
80m2Y312.6(9) keV4.7(3) μsIT80Y(2+)
81Y394280.9294543(58)70.4(10) sβ+81Sr(5/2+)
82Y394381.9269302(59)8.30(20) sβ+82Sr1+
82m1Y402.63(14) keV258(22) nsIT82Y4−
82m2Y507.50(13) keV148(6) nsIT82Y6+
83Y394482.922484(20)7.08(8) minβ+83Sr(9/2+)
83mY62.04(10) keV2.85(2) minβ+ (60%)83Sr(3/2−)
IT (40%)83Y
84Y394583.9206711(46)39.5(8) minβ+84Sr(6+)
84m1Y67.0(2) keV4.6(2) sβ+84Sr1+
84m2Y210.42(16) keV292(10) nsIT84Y4−
85Y394684.916433(20)2.68(5) hβ+85Sr(1/2)−
85m1Y19.68(17) keV4.86(20) hβ+85Sr(9/2)+
IT?85Y
85m2Y266.18(10) keV178(7) nsIT85Y(5/2)−
86Y394785.914886(15)14.74(2) hβ+86Sr4−
86m1Y218.21(9) keV47.4(4) minIT (99.31%)86Y(8+)
β+ (0.69%)86Sr
86m2Y302.18(9) keV125.3(55) nsIT86Y6+
87Y394886.9108761(12)79.8(3) hβ+87Sr1/2−
87mY380.82(7) keV13.37(3) hIT (98.43%)87Y9/2+
β+ (1.57%)87Sr
88Y394987.9095013(16)106.629(24) dβ+88Sr4−
88m1Y392.86(9) keV301(3) μsIT88Y1+
88m2Y674.55(4) keV13.98(17) msIT88Y8+
89Y [n 10] 395088.90583816(36)Stable1/2−1.0000
89mY908.97(3) keV15.663(5) sIT89Y9/2+
90Y [n 10] 395189.90714175(38)64.05(5) hβ90Zr2−
90mY682.01(5) keV3.226(11) hIT90Y7+
β (0.0018%)90Zr
91Y [n 10] 395290.9072980(20)58.51(6) dβ91Zr1/2−
91mY555.58(5) keV49.71(4) minIT91Y9/2+
β?91Zr
92Y395391.9089458(98)3.54(1) hβ92Zr2−
92mY807(50)# keV3.7(5) μsIT92Y7+#
93Y395492.909578(11)10.18(8) hβ93Zr1/2−
93mY758.719(21) keV820(40) msIT93Y9/2+
94Y395593.9115921(68)18.7(1) minβ94Zr2−
94mY1202.3(10) keV1.304(12) μsIT94Y(5+)
95Y395694.9128197(73)10.3(1) minβ95Zr1/2−
95mY1087.6(6) keV48.6(5) μsIT95Y9/2+
96Y395795.9159093(65)5.34(5) sβ96Zr0−
96m1Y1540(9) keV9.6(2) sβ96Zr8+
96m2Y1655.0(11) keV181(9) nsIT96Y(6+)
97Y395896.9182867(72)3.75(3) sβ (99.945%)97Zr1/2−
β, n (0.055%)96Zr
97m1Y667.52(23) keV1.17(3) sβ (>99.2%)97Zr9/2+
IT (<0.7%)97Y
β, n (0.11%)96Zr
97m2Y3522.6(4) keV142(8) msIT (94.8%)97Y(27/2−)
β (5.2%)97Zr
98Y395997.9223948(85)548(2) msβ (99.67%)98Zr0−
β, n (0.33%)97Zr
98m1Y170.78(5) keV615(8) nsIT98Y2−
98m2Y465.7(7) keV2.32(8) sβ (96.56%)98Zr(6,7)+
β, n (3.44%)97Zr
IT?98Y
98m3Y496.10(11) keV6.90(54) μsIT98Y(4)−
98m4Y594(10) keV180(7) nsIT98Y(3−,4−)
98m5Y972.17(20) keV450(150) nsIT98Y(8+)
98m6Y1181.50(18) keV762(14) nsIT98Y(10−)
99Y396098.9241608(71)1.484(7) sβ (98.23%)99Zr5/2+
β, n (1.77%)98Zr
99mY2141.65(19) keV8.2(4) μsIT99Y(17/2+)
100Y396199.927728(12)940(30) msβ100Zr4+
β, n?99Zr
100mY144(16) keV727(6) msβ (98.92%)100Zr1+#
β, n (1.08%)99Zr
101Y3962100.9301608(76)426(20) msβ (97.7%)101Zr5/2+
β, n (2.3%)100Zr
101mY1205.0(10) keV870(90) nsIT101Y13/2−#
102Y3963101.9343285(44)360(40) msβ (>97.4%)102Zr(5−)
β, n (<2.6%)101Zr
102mY [n 9] 100(100)# keV300(100) msβ (>97.4%)102Zr(0−,1−)
β, n (<2.6%)101Zr
IT?102Y
103Y3964102.937244(12)239(12) msβ (92.0%)103Zr5/2+#
β, n (8.0%)102Zr
104Y3965103.94194(22)#197(4) msβ (66%)104Zr(0+,1+)#
β, n (34%)103Zr
β, 2n?102Zr
105Y3966104.94571(43)#95(9) msβ105Zr5/2+#
β, n (<82%)104Zr
β, 2n?103Zr
106Y3967105.95084(54)#75(6) msβ106Zr2+#
β, n?105Zr
β, 2n?104Zr
107Y3968106.95494(54)#33.5(3) msβ107Zr5/2+#
β, n?106Zr
β, 2n?105Zr
108Y3969107.96052(64)#30(5) msβ108Zr6−#
β, n?107Zr
β, 2n?106Zr
109Y3970108.96513(75)#25(5) msβ109Zr5/2+#
β, n?108Zr
β, 2n?107Zr
110Y [5] 3971
111Y [5] 3972
This table header & footer:
  1. mY  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold italics symbol as daughter  Daughter product is nearly stable.
  7. Bold symbol as daughter  Daughter product is stable.
  8. () spin value  Indicates spin with weak assignment arguments.
  9. 1 2 Order of ground state and isomer is uncertain.
  10. 1 2 3 Fission product

See also

Daughter products other than yttrium

References

  1. "Standard Atomic Weights: Yttrium". CIAAW. 2021.
  2. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  4. 1 2 3 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  5. 1 2 Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of 110Zr". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl: 10261/260248 . S2CID   234019083.