Isotopes of tin

Last updated
Isotopes of tin  (50Sn)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
112Sn0.970% stable
114Sn0.66%stable
115Sn0.34%stable
116Sn14.5%stable
117Sn7.68%stable
118Sn24.2%stable
119Sn8.59%stable
120Sn32.6%stable
122Sn4.63%stable
124Sn5.79%stable
126Sn trace 2.3×105 y β 126Sb
Standard atomic weight Ar°(Sn)

Tin (50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay). This is probably related to the fact that 50 is a "magic number" of protons. In addition, twenty-nine unstable tin isotopes are known, including tin-100 (100Sn) (discovered in 1994) [4] and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.

Contents

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da) [5]
[n 2] [n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7] [n 4]
Natural abundance (mole fraction)
Excitation energy [n 4] Normal proportionRange of variation
99Sn [n 8] 504998.94850(63)#24(4) ms β+ (95%)99In9/2+#
β+, p (5%)98Cd
100Sn505099.93865(26)1.18(8) sβ+ (>83%)100In0+
β+, p (<17%)99Cd
101Sn5051100.93526(32)2.22(5) sβ+101In(7/2+)
β+, p?100Cd
102Sn5052101.93029(11)3.8(2) sβ+102In0+
102mSn2017(2) keV367(8) ns IT 102Sn(6+)
103Sn5053102.92797(11)#7.0(2) sβ+ (98.8%)103In5/2+#
β+, p (1.2%)102Cd
104Sn5054103.923105(6)20.8(5) sβ+104In0+
105Sn5055104.921268(4)32.7(5) sβ+105In(5/2+)
β+, p (0.011%)104Cd
106Sn5056105.916957(5)1.92(8) minβ+106In0+
107Sn5057106.915714(6)2.90(5) minβ+107In(5/2+)
108Sn5058107.911894(6)10.30(8) minβ+108In0+
109Sn5059108.911293(9)18.1(2) minβ+109In5/2+
110Sn5060109.907845(15)4.154(4) h EC 110In0+
111Sn5061110.907741(6)35.3(6) minβ+111In7/2+
111mSn254.71(4) keV12.5(10) μsIT111Sn1/2+
112Sn5062111.9048249(3) Observationally Stable [n 9] 0+0.0097(1)
113Sn5063112.9051759(17)115.08(4) dβ+113In1/2+
113mSn77.389(19) keV21.4(4) min IT (91.1%)113Sn7/2+
β+ (8.9%)113In
114Sn5064113.90278013(3)Stable0+0.0066(1)
114mSn3087.37(7) keV733(14) nsIT114Sn7−
115Sn5065114.903344696(16)Stable1/2+0.0034(1)
115m1Sn612.81(4) keV3.26(8) µs7/2+
115m2Sn713.64(12) keV159(1) µs11/2−
116Sn5066115.90174283(10)Stable0+0.1454(9)
117Sn5067116.9029540(5)Stable1/2+0.0768(7)
117m1Sn314.58(4) keV13.76(4) dIT117Sn11/2−
117m2Sn2406.4(4) keV1.75(7) µs(19/2+)
118Sn5068117.9016066(5)Stable0+0.2422(9)
119Sn5069118.9033113(8)Stable1/2+0.0859(4)
119m1Sn89.531(13) keV293.1(7) dIT119Sn11/2−
119m2Sn2127.0(10) keV9.6(12) µs(19/2+)
120Sn5070119.9022026(10)Stable0+0.3258(9)
120m1Sn2481.63(6) keV11.8(5) µs(7−)
120m2Sn2902.22(22) keV6.26(11) µs(10+)#
121Sn [n 10] 5071120.9042435(11)27.03(4) hβ121Sb3/2+
121m1Sn6.30(6) keV43.9(5) yIT (77.6%)121Sn11/2−
β (22.4%)121Sb
121m2Sn1998.8(9) keV5.3(5) µs(19/2+)#
121m3Sn2834.6(18) keV0.167(25) µs(27/2−)
122Sn [n 10] 5072121.9034455(26)Observationally Stable [n 11] 0+0.0463(3)
123Sn [n 10] 5073122.9057271(27)129.2(4) dβ123Sb11/2−
123m1Sn24.6(4) keV40.06(1) minβ123Sb3/2+
123m2Sn1945.0(10) keV7.4(26) µs(19/2+)
123m3Sn2153.0(12) keV6 µs(23/2+)
123m4Sn2713.0(14) keV34 µs(27/2−)
124Sn [n 10] 5074123.9052796(14)Observationally Stable [n 12] 0+0.0579(5)
124m1Sn2204.622(23) keV0.27(6) µs5-
124m2Sn2325.01(4) keV3.1(5) µs7−
124m3Sn2656.6(5) keV45(5) µs(10+)#
125Sn [n 10] 5075124.9077894(14)9.64(3) dβ125Sb11/2−
125mSn27.50(14) keV9.52(5) minβ125Sb3/2+
126Sn [n 13] 5076125.907659(11)2.30(14)×105 yβ (66.5%)126m2Sb0+< 10−14 [6]
β (33.5%)126m1Sb
126m1Sn2218.99(8) keV6.6(14) µs7−
126m2Sn2564.5(5) keV7.7(5) µs(10+)#
127Sn5077126.910392(10)2.10(4) hβ127Sb(11/2−)
127mSn4.7(3) keV4.13(3) minβ127Sb(3/2+)
128Sn5078127.910508(19)59.07(14) minβ128Sb0+
128mSn2091.50(11) keV6.5(5) sIT128Sn(7−)
129Sn5079128.913482(19)2.23(4) minβ129Sb(3/2+)#
129mSn35.2(3) keV6.9(1) minβ (99.99%)129Sb(11/2−)#
IT (.002%)129Sn
130Sn5080129.9139745(20)3.72(7) minβ130Sb0+
130m1Sn1946.88(10) keV1.7(1) minβ130Sb(7−)#
130m2Sn2434.79(12) keV1.61(15) µs(10+)
131Sn5081130.917053(4)56.0(5) sβ131Sb(3/2+)
131m1Sn80(30)# keV58.4(5) sβ (99.99%)131Sb(11/2−)
IT (.0004%)131Sn
131m2Sn4846.7(9) keV300(20) ns(19/2− to 23/2−)
132Sn5082131.9178239(21)39.7(8) sβ132Sb0+
133Sn5083132.9239138(20)1.45(3) sβ (99.97%)133Sb(7/2−)#
β, n (.0294%)132Sb
134Sn5084133.928680(3)1.050(11) sβ (83%)134Sb0+
β, n (17%)133Sb
135Sn5085134.934909(3)530(20) msβ135Sb(7/2−)
β, n134Sb
136Sn5086135.93970(22)#0.25(3) sβ136Sb0+
β, n135Sb
137Sn5087136.94616(32)#190(60) msβ137Sb5/2−#
138Sn5088137.95114(43)#140 ms +30-20β138Sb
138mSn1344(2) keV210(45) ns
139Sn5089138.95780(43)#130 msβ139Sb
140Sn5090139.96297(32)#50# ms [>550 ns]β?140Sb0+
β, n?139Sb
β, 2n?138Sb
This table header & footer:
  1. mSn  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. Heaviest known nuclide with more protons than neutrons
  9. Believed to decay by β+β+ to 112Cd
  10. 1 2 3 4 5 Fission product
  11. Believed to undergo ββ decay to 122Te
  12. Believed to undergo ββ decay to 124Te with a half-life over 100×1015 years
  13. Long-lived fission product

Tin-117m

Tin-117m is a radioisotope of tin. One of its uses is in a particulate suspension to treat canine synovitis (radiosynoviorthesis). [7]

Tin-121m

Tin-121m (121mSn) is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years.

In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce tin-121 at higher yields. For example, its yield from uranium-235 is 0.0007% per thermal fission and 0.002% per fast fission. [8]

Tin-126

Yield, % per fission [8]
Thermal Fast 14 MeV
232Th not fissile 0.0481 ± 0.00770.87 ± 0.20
233U 0.224 ± 0.0180.278 ± 0.0221.92 ± 0.31
235U 0.056 ± 0.0040.0137 ± 0.0011.70 ± 0.14
238U not fissile 0.054 ± 0.0041.31 ± 0.21
239Pu 0.199 ± 0.0160.26 ± 0.022.02 ± 0.22
241Pu 0.082 ± 0.0190.22 ± 0.03 ?

Tin-126 is a radioisotope of tin and one of the only seven long-lived fission products of uranium and plutonium. While tin-126's half-life of 230,000 years translates to a low specific activity of gamma radiation, its short-lived decay products, two isomers of antimony-126, emit 17 and 40 keV gamma radiation and a 3.67 MeV beta particle on their way to stable tellurium-126, making external exposure to tin-126 a potential concern.

Tin-126 is in the middle of the mass range for fission products. Thermal reactors, which make up almost all current nuclear power plants, produce it at a very low yield (0.056% for 235U), since slow neutrons almost always fission 235U or 239Pu into unequal halves. Fast fission in a fast reactor or nuclear weapon, or fission of some heavy minor actinides such as californium, will produce it at higher yields.

Related Research Articles

Natural hafnium (72Hf) consists of five observationally stable isotopes (176Hf, 177Hf, 178Hf, 179Hf, and 180Hf) and one very long-lived radioisotope, 174Hf, with a half-life of 7.0×1016 years. In addition, there are 34 known synthetic radioisotopes, the most stable of which is 182Hf with a half-life of 8.9×106 years. This extinct radionuclide is used in hafnium–tungsten dating to study the chronology of planetary differentiation.

Naturally occurring ytterbium (70Yb) is composed of seven stable isotopes: 168Yb, 170Yb–174Yb, and 176Yb, with 174Yb being the most abundant. 30 radioisotopes have been characterized, with the most stable being 169Yb with a half-life of 32.014 days, 175Yb with a half-life of 4.185 days, and 166Yb with a half-life of 56.7 hours. All of the remaining radioactive isotopes have half-lives that are less than 2 hours, and the majority of these have half-lives that are less than 20 minutes. This element also has 18 meta states, with the most stable being 169mYb.

Naturally occurring terbium (65Tb) is composed of one stable isotope, 159Tb. Thirty-seven radioisotopes have been characterized, with the most stable being 158Tb with a half-life of 180 years, 157Tb with a half-life of 71 years, and 160Tb with a half-life of 72.3 days. All of the remaining radioactive isotopes have half-lives that are less than 6.907 days, and the majority of these have half-lives that are less than 24 seconds. This element also has 27 meta states, with the most stable being 156m1Tb, 154m2Tb and 154m1Tb.

Naturally occurring gadolinium (64Gd) is composed of 6 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd, 158Gd and 160Gd, and 1 radioisotope, 152Gd, with 158Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of 160Gd has never been observed; only a lower limit on its half-life of more than 1.3×1021 years has been set experimentally.

Promethium (61Pm) is an artificial element, except in trace quantities as a product of spontaneous fission of 238U and 235U and alpha decay of 151Eu, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was first synthesized in 1945.

Naturally occurring praseodymium (59Pr) is composed of one stable isotope, 141Pr. Thirty-eight radioisotopes have been characterized with the most stable being 143Pr, with a half-life of 13.57 days and 142Pr, with a half-life of 19.12 hours. All of the remaining radioactive isotopes have half-lives that are less than 5.985 hours and the majority of these have half-lives that are less than 33 seconds. This element also has 15 meta states with the most stable being 138mPr, 142mPr and 134mPr.

Naturally occurring cerium (58Ce) is composed of 4 stable isotopes: 136Ce, 138Ce, 140Ce, and 142Ce, with 140Ce being the most abundant and the only one theoretically stable; 136Ce, 138Ce, and 142Ce are predicted to undergo double beta decay but this process has never been observed. There are 35 radioisotopes that have been characterized, with the most stable being 144Ce, with a half-life of 284.893 days; 139Ce, with a half-life of 137.640 days and 141Ce, with a half-life of 32.501 days. All of the remaining radioactive isotopes have half-lives that are less than 4 days and the majority of these have half-lives that are less than 10 minutes. This element also has 10 meta states.

<span class="mw-page-title-main">Isotopes of lanthanum</span> Nuclides with atomic number of 57 but with different mass numbers

Naturally occurring lanthanum (57La) is composed of one stable (139La) and one radioactive (138La) isotope, with the stable isotope, 139La, being the most abundant (99.91% natural abundance). There are 39 radioisotopes that have been characterized, with the most stable being 138La, with a half-life of 1.02×1011 years; 137La, with a half-life of 60,000 years and 140La, with a half-life of 1.6781 days. The remaining radioactive isotopes have half-lives that are less than a day and the majority of these have half-lives that are less than 1 minute. This element also has 12 nuclear isomers, the longest-lived of which is 132mLa, with a half-life of 24.3 minutes. Lighter isotopes mostly decay to isotopes of barium and heavy ones mostly decay to isotopes of cerium. 138La can decay to both.

Naturally occurring barium (56Ba) is a mix of six stable isotopes and one very long-lived radioactive primordial isotope, barium-130, identified as being unstable by geochemical means (from analysis of the presence of its daughter xenon-130 in rocks) in 2001. This nuclide decays by double electron capture (absorbing two electrons and emitting two neutrinos), with a half-life of (0.5–2.7)×1021 years (about 1011 times the age of the universe).

There are 39 known isotopes and 17 nuclear isomers of tellurium (52Te), with atomic masses that range from 104 to 142. These are listed in the table below.

Indium (49In) consists of two primordial nuclides, with the most common (~ 95.7%) nuclide (115In) being measurably though weakly radioactive. Its spin-forbidden decay has a half-life of 4.41×1014 years, much longer than the currently accepted age of the Universe.

Naturally occurring cadmium (48Cd) is composed of 8 isotopes. For two of them, natural radioactivity was observed, and three others are predicted to be radioactive but their decays have not been observed, due to extremely long half-lives. The two natural radioactive isotopes are 113Cd (beta decay, half-life is 8.04 × 1015 years) and 116Cd (two-neutrino double beta decay, half-life is 2.8 × 1019 years). The other three are 106Cd, 108Cd (double electron capture), and 114Cd (double beta decay); only lower limits on their half-life times have been set. Three isotopes—110Cd, 111Cd, and 112Cd—are theoretically stable. Among the isotopes absent in natural cadmium, the most long-lived are 109Cd with a half-life of 462.6 days, and 115Cd with a half-life of 53.46 hours. All of the remaining radioactive isotopes have half-lives that are less than 2.5 hours and the majority of these have half-lives that are less than 5 minutes. This element also has 12 known meta states, with the most stable being 113mCd (t1/2 14.1 years), 115mCd (t1/2 44.6 days) and 117mCd (t1/2 3.36 hours).

Natural palladium (46Pd) is composed of six stable isotopes, 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, although 102Pd and 110Pd are theoretically unstable. The most stable radioisotopes are 107Pd with a half-life of 6.5 million years, 103Pd with a half-life of 17 days, and 100Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u (91Pd) to 128.96 u (129Pd). Most of these have half-lives that are less than a half an hour except 101Pd, 109Pd, and 112Pd.

Naturally occurring ruthenium (44Ru) is composed of seven stable isotopes. Additionally, 27 radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru, with a half-life of 373.59 days; 103Ru, with a half-life of 39.26 days and 97Ru, with a half-life of 2.9 days.

Naturally occurring zirconium (40Zr) is composed of four stable isotopes (of which one may in the future be found radioactive), and one very long-lived radioisotope (96Zr), a primordial nuclide that decays via double beta decay with an observed half-life of 2.0×1019 years; it can also undergo single beta decay, which is not yet observed, but the theoretically predicted value of t1/2 is 2.4×1020 years. The second most stable radioisotope is 93Zr, which has a half-life of 1.53 million years. Thirty other radioisotopes have been observed. All have half-lives less than a day except for 95Zr (64.02 days), 88Zr (83.4 days), and 89Zr (78.41 hours). The primary decay mode is electron capture for isotopes lighter than 92Zr, and the primary mode for heavier isotopes is beta decay.

Natural yttrium (39Y) is composed of a single isotope yttrium-89. The most stable radioisotopes are 88Y, which has a half-life of 106.6 days and 91Y with a half-life of 58.51 days. All the other isotopes have half-lives of less than a day, except 87Y, which has a half-life of 79.8 hours, and 90Y, with 64 hours. The dominant decay mode below the stable 89Y is electron capture and the dominant mode after it is beta emission. Thirty-five unstable isotopes have been characterized.

Bromine (35Br) has two stable isotopes, 79Br and 81Br, and 32 known radioisotopes, the most stable of which is 77Br, with a half-life of 57.036 hours.

Germanium (32Ge) has five naturally occurring isotopes, 70Ge, 72Ge, 73Ge, 74Ge, and 76Ge. Of these, 76Ge is very slightly radioactive, decaying by double beta decay with a half-life of 1.78 × 1021 years (130 billion times the age of the universe).

Naturally occurring zinc (30Zn) is composed of the 5 stable isotopes 64Zn, 66Zn, 67Zn, 68Zn, and 70Zn with 64Zn being the most abundant. Twenty-five radioisotopes have been characterised with the most abundant and stable being 65Zn with a half-life of 244.26 days, and 72Zn with a half-life of 46.5 hours. All of the remaining radioactive isotopes have half-lives that are less than 14 hours and the majority of these have half-lives that are less than 1 second. This element also has 10 meta states.

Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 27 radioisotopes. The most stable radioisotope is 67Cu with a half-life of 61.83 hours, while the least stable is 54Cu with a half-life of approximately 75 ns. Most have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β+ decay, while isotopes with atomic masses above 65 tend to undergo β decay. 64Cu decays by both β+ and β.

References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Tin". CIAAW. 1983.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. K. Sümmerer; R. Schneider; T Faestermann; J. Friese; H. Geissel; R. Gernhäuser; H. Gilg; F. Heine; J. Homolka; P. Kienle; H. J. Körner; G. Münzenberg; J. Reinhold; K. Zeitelhack (April 1997). "Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS". Nuclear Physics A. 616 (1–2): 341–345. Bibcode:1997NuPhA.616..341S. doi:10.1016/S0375-9474(97)00106-1.
  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. H.-T. Shen; et al. "Research on measurement of 126Sn by AMS" (PDF). accelconf.web.cern.ch.
  7. "https://www.nrc.gov/site-help/search.html?site=AllSites&searchtext=synovetin" (PDF).{{cite web}}: External link in |title= (help)
  8. 1 2 M. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at https://www-nds.iaea.org/exfor/endf.htm)