Isotopes of tin

Last updated

Isotopes of tin  (50Sn)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
112Sn0.970% stable
113Sn synth 115.08 d ε 113In
114Sn0.66%stable
115Sn0.34%stable
116Sn14.5%stable
117Sn7.68%stable
118Sn24.2%stable
119Sn8.59%stable
120Sn32.6%stable
121mSnsynth43.9 y IT 77.6% 121Sn
β 22.4% 121Sb
122Sn4.63%stable
123Snsynth129.2 dβ 123Sb
124Sn5.79%stable
126Sn trace 2.3×105 yβ 126Sb
Standard atomic weight Ar°(Sn)

Tin (50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay). This is probably related to the fact that 50 is a "magic number" of protons. In addition, 32 unstable tin isotopes are known, including tin-100 (100Sn) (discovered in 1994) [4] and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.

Contents

List of isotopes


Nuclide
[n 1]
Z N Isotopic mass (Da) [5]
[n 2] [n 3]
Half-life [1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity [1]
[n 7] [n 4]
Natural abundance (mole fraction)
Excitation energy [n 4] Normal proportion [1] Range of variation
98Sn [6] 50480+
99Sn [n 8] 504998.94850(63)#24(4) ms β+ (95%)99In9/2+#
β+, p (5%)98Cd
100Sn [n 9] 505099.93865(26)1.18(8) sβ+ (>83%)100In0+
β+, p (<17%)99Cd
101Sn5051100.93526(32)2.22(5) sβ+101In(7/2+)
β+, p?100Cd
102Sn5052101.93029(11)3.8(2) sβ+102In0+
102mSn2017(2) keV367(8) ns IT 102Sn(6+)
103Sn5053102.92797(11)#7.0(2) sβ+ (98.8%)103In5/2+#
β+, p (1.2%)102Cd
104Sn5054103.923105(6)20.8(5) sβ+104In0+
105Sn5055104.921268(4)32.7(5) sβ+105In(5/2+)
β+, p (0.011%)104Cd
106Sn5056105.916957(5)1.92(8) minβ+106In0+
107Sn5057106.915714(6)2.90(5) minβ+107In(5/2+)
108Sn5058107.911894(6)10.30(8) minβ+108In0+
109Sn5059108.911293(9)18.1(2) minβ+109In5/2+
110Sn5060109.907845(15)4.154(4) h EC 110In0+
111Sn5061110.907741(6)35.3(6) minβ+111In7/2+
111mSn254.71(4) keV12.5(10) μsIT111Sn1/2+
112Sn5062111.9048249(3) Observationally Stable [n 10] 0+0.0097(1)
113Sn5063112.9051759(17)115.08(4) dβ+113In1/2+
113mSn77.389(19) keV21.4(4) min IT (91.1%)113Sn7/2+
β+ (8.9%)113In
114Sn5064113.90278013(3)Stable0+0.0066(1)
114mSn3087.37(7) keV733(14) nsIT114Sn7−
115Sn [n 11] 5065114.903344695(16)Stable1/2+0.0034(1)
115m1Sn612.81(4) keV3.26(8) μsIT115Sn7/2+
115m2Sn713.64(12) keV159(1) μsIT115Sn11/2−
116Sn5066115.90174283(10)Stable0+0.1454(9)
116m1Sn2365.975(21) keV348(19) nsIT116Sn5−
116m2Sn3547.16(17) keV833(30) nsIT116Sn10+
117Sn [n 11] 5067116.90295404(52)Stable1/2+0.0768(7)
117m1Sn [n 11] 314.58(4) keV13.939(24) dIT117Sn11/2−
117m2Sn2406.4(4) keV1.75(7) μsIT117Sn(19/2+)
118Sn [n 11] 5068117.90160663(54)Stable0+0.2422(9)
118m1Sn2574.91(4) keV230(10) nsIT118Sn7−
118m2Sn3108.06(22) keV2.52(6) μsIT118Sn(10+)
119Sn [n 11] 5069118.90331127(78)Stable1/2+0.0859(4)
119m1Sn [n 11] 89.531(13) keV293.1(7) dIT119Sn11/2−
119m2Sn2127.0(10) keV9.6(12) μsIT119Sn(19/2+)
119m3Sn2369.0(3) keV96(9) nsIT119Sn23/2+
120Sn [n 11] 5070119.90220256(99)Stable0+0.3258(9)
120m1Sn2481.63(6) keV11.8(5) μsIT120Sn7−
120m2Sn2902.22(22) keV6.26(11) μsIT120Sn10+
121Sn [n 11] 5071120.9042435(11)27.03(4) hβ121Sb3/2+
121m1Sn [n 11] 6.31(6) keV43.9(5) yIT (77.6%)121Sn11/2−
β (22.4%)121Sb
121m2Sn1998.68(13) keV5.3(5) μsIT121Sn19/2+
121m3Sn2222.0(2) keV520(50) nsIT121Sn23/2+
121m4Sn2833.9(2) keV167(25) nsIT121Sn27/2−
122Sn [n 11] 5072121.9034455(26)Observationally Stable [n 12] 0+0.0463(3)
122m1Sn2409.03(4) keV7.5(9) μsIT122Sn7−
122m2Sn2765.5(3) keV62(3) μsIT122Sn10+
122m3Sn4721.2(3) keV139(9) nsIT122Sn15−
123Sn [n 11] 5073122.9057271(27)129.2(4) dβ123Sb11/2−
123m1Sn24.6(4) keV40.06(1) minβ123Sb3/2+
123m2Sn1944.90(12) keV7.4(26) μsIT123Sn19/2+
123m3Sn2152.66(19) keV6 μsIT123Sn23/2+
123m4Sn2712.47(21) keV34 μsIT123Sn27/2−
124Sn [n 11] 5074123.9052796(14)Observationally Stable [n 13] 0+0.0579(5)
124m1Sn2204.620(23) keV270(60) nsIT124Sn5-
124m2Sn2324.96(4) keV3.1(5) μsIT124Sn7−
124m3Sn2656.6(3) keV51(3) μsIT124Sn10+
124m4Sn4552.4(3) keV260(25) nsIT124Sn15−
125Sn [n 11] 5075124.9077894(14)9.634(15) dβ125Sb11/2−
125m1Sn27.50(14) keV9.77(25) minβ125Sb3/2+
125m2Sn1892.8(3) keV6.2(2) μsIT125Sn19/2+
125m3Sn2059.5(4) keV650(60) nsIT125Sn23/2+
125m4Sn2623.5(5) keV230(17) nsIT125Sn27/2−
126Sn [n 14] 5076125.907658(11)2.30(14)×105 yβ126Sb0+< 10−14 [7]
126m1Sn2218.99(8) keV6.1(7) μsIT126Sn7−
126m2Sn2564.5(5) keV7.6(3) μsIT126Sn10+
126m3Sn4347.4(4) keV114(2) nsIT126Sn15−
127Sn5077126.9103917(99)2.10(4) hβ127Sb11/2−
127m1Sn5.07(6) keV4.13(3) minβ127Sb3/2+
127m2Sn1826.67(16) keV4.52(15) μsIT127Sn19/2+
127m3Sn1930.97(17) keV1.26(15) μsIT127Sn(23/2+)
127m4Sn2552.4(10) keV250(30) nsIT127Sn(27/2−)
128Sn5078127.910508(19)59.07(14) minβ128Sb0+
128m1Sn2091.50(11) keV6.5(5) sIT128Sn7−
128m2Sn2491.91(17) keV2.91(14) μsIT128Sn10+
128m3Sn4099.5(4) keV220(30) nsIT128Sn(15−)
129Sn5079128.913482(19)2.23(4) minβ129Sb3/2+
129m1Sn35.15(5) keV6.9(1) minβ129Sb11/2−
129m2Sn1761.6(10) keV3.49(11) μsIT129Sn(19/2+)
129m3Sn1802.6(10) keV2.22(13) μsIT129Sn23/2+
129m4Sn2552.9(11) keV221(18) nsIT129Sn(27/2−)
130Sn5080129.9139745(20)3.72(7) minβ130Sb0+
130m1Sn1946.88(10) keV1.7(1) minβ130Sb7−
130m2Sn2434.79(12) keV1.501(17) μsIT130Sn(10+)
131Sn5081130.917053(4)56.0(5) sβ131Sb3/2+
131m1Sn65.1(3) keV58.4(5) sβ131Sb11/2−
IT?131Sn
131m2Sn4670.0(4) keV316(5) nsIT131Sn(23/2−)
132Sn5082131.9178239(21)39.7(8) sβ132Sb0+
132mSn4848.52(20) keV2.080(16) μsIT132Sn8+
133Sn5083132.9239138(20)1.37(7) sβ (99.97%)133Sb7/2−
β n (.0294%)132Sb
134Sn5084133.928680(3)0.93(8) sβ (83%)134Sb0+
βn (17%)133Sb
134mSn1247.4(5) keV87(8) nsIT134Sn6+
135Sn5085134.934909(3)515(5) msβ (79%)135Sb7/2−#
βn (21%)134Sb
β2n?133Sb
136Sn5086135.93970(22)#355(18) msβ (72%)136Sb0+
βn (28%)135Sb
β2n?134Sb
137Sn5087136.94616(32)#249(15) msβ (52%)137Sb5/2−#
βn (48%)136Sb
β2n?135Sb
138Sn5088137.95114(43)#148(9) msβ (64%)138Sb0+
βn (36%)137Sb
β2n?136Sb
138mSn1344(2) keV210(45) nsIT138Sn(6+)
139Sn5089138.95780(43)#120(38) msβ139Sb5/2−#
βn?138Sb
β2n?137Sb
140Sn5090139.96297(32)#50# ms
[>550 ns]
β?140Sb0+
βn?139Sb
β2n?138Sb
This table header & footer:
  1. mSn  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. Heaviest known nuclide with more protons than neutrons
  9. Heaviest nuclide with equal numbers of protons and neutrons with no observed α decay
  10. Believed to decay by β+β+ to 112Cd
  11. 1 2 3 4 5 6 7 8 9 10 11 12 13 Fission product
  12. Believed to undergo ββ decay to 122Te
  13. Believed to undergo ββ decay to 124Te with a half-life over 1×1017 years
  14. Long-lived fission product

Tin-117m

Tin-117m is a radioisotope of tin. One of its uses is in a particulate suspension to treat canine synovitis (radiosynoviorthesis). [8]

Tin-121m

Tin-121m (121mSn) is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years.

In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce tin-121 at higher yields. For example, its yield from uranium-235 is 0.0007% per thermal fission and 0.002% per fast fission. [9]

Tin-126

Yield, % per fission [9]
Thermal Fast 14 MeV
232Th not fissile 0.0481 ± 0.00770.87 ± 0.20
233U 0.224 ± 0.0180.278 ± 0.0221.92 ± 0.31
235U 0.056 ± 0.0040.0137 ± 0.0011.70 ± 0.14
238U not fissile 0.054 ± 0.0041.31 ± 0.21
239Pu 0.199 ± 0.0160.26 ± 0.022.02 ± 0.22
241Pu 0.082 ± 0.0190.22 ± 0.03 ?

Tin-126 is a radioisotope of tin and one of the only seven long-lived fission products of uranium and plutonium. While tin-126's half-life of 230,000 years translates to a low specific activity of gamma radiation, its short-lived decay products, two isomers of antimony-126, emit a cascade of hard gamma radiation - at least 3 photons over 400 keV per decay - before reaching stable tellurium-126, making external exposure to tin-126 a potential concern.

Tin-126 is in the middle of the mass range for fission products. Thermal reactors, which make up almost all current nuclear power plants, produce it at only low yield, since slow neutrons almost always fission 235U or 239Pu into unequal halves. Fast fission in a fast reactor or nuclear weapon, or fission of some heavy minor actinides such as californium, will produce it at higher yields.

See also

Daughter products other than tin

References

  1. 1 2 3 4 5 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Tin". CIAAW. 1983.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. K. Sümmerer; R. Schneider; T Faestermann; J. Friese; H. Geissel; R. Gernhäuser; H. Gilg; F. Heine; J. Homolka; P. Kienle; H. J. Körner; G. Münzenberg; J. Reinhold; K. Zeitelhack (April 1997). "Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS". Nuclear Physics A. 616 (1–2): 341–345. Bibcode:1997NuPhA.616..341S. doi:10.1016/S0375-9474(97)00106-1.
  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. Suzuki, H.; Fukuda, N.; Takeda, H.; et al. (2025). "Discovery of 98Sn produced by the projectile fragmentation of a 345-MeV/nucleon 124Xe beam". Progress of Theoretical and Experimental Physics (ptaf051). doi: 10.1093/ptep/ptaf051 .
  7. Shen, Hongtao; Jiang, Shan; He, Ming; Dong, Kejun; Li, Chaoli; He, Guozhu; Wu, Shaolei; Gong, Jie; Lu, Liyan; Li, Shizhuo; Zhang, Dawei; Shi, Guozhu; Huang, Chuntang; Wu, Shaoyong (February 2011). "Study on measurement of fission product nuclide 126Sn by AMS" (PDF). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 269 (3): 392–395. doi:10.1016/j.nimb.2010.11.059.
  8. "Procedure for Use of Synovetin OA" (PDF). nrc.gov.
  9. 1 2 M. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at https://www-nds.iaea.org/exfor/endf.htm)