This article may be too technical for most readers to understand.(January 2014) |
Activity | |
---|---|
Common symbols | A |
SI unit | becquerel |
Other units | rutherford, curie |
In SI base units | s−1 |
Specific activity | |
---|---|
Common symbols | a |
SI unit | becquerel per kilogram |
Other units | rutherford per gram, curie per gram |
In SI base units | s−1⋅kg−1 |
Specific activity (symbol a) is the activity per unit mass of a radionuclide and is a physical property of that radionuclide. [1] [2] It is usually given in units of becquerel per kilogram (Bq/kg), but another commonly used unit of specific activity is the curie per gram (Ci/g).
In the context of radioactivity, activity or total activity (symbol A) is a physical quantity defined as the number of radioactive transformations per second that occur in a particular radionuclide. [3] The unit of activity is the becquerel (symbol Bq), which is defined equivalent to reciprocal seconds (symbol s-1). The older, non-SI unit of activity is the curie (Ci), which is 3.7×1010 radioactive decays per second. Another unit of activity is the rutherford, which is defined as 1×106 radioactive decays per second.
The specific activity should not be confused with level of exposure to ionizing radiation and thus the exposure or absorbed dose, which is the quantity important in assessing the effects of ionizing radiation on humans.
Since the probability of radioactive decay for a given radionuclide within a set time interval is fixed (with some slight exceptions, see changing decay rates), the number of decays that occur in a given time of a given mass (and hence a specific number of atoms) of that radionuclide is also a fixed (ignoring statistical fluctuations).
Radioactivity is expressed as the decay rate of a particular radionuclide with decay constant λ and the number of atoms N:
The integral solution is described by exponential decay:
where N0 is the initial quantity of atoms at time t = 0.
Half-life T1/2 is defined as the length of time for half of a given quantity of radioactive atoms to undergo radioactive decay:
Taking the natural logarithm of both sides, the half-life is given by
Conversely, the decay constant λ can be derived from the half-life T1/2 as
The mass of the radionuclide is given by
where M is molar mass of the radionuclide, and NA is the Avogadro constant. Practically, the mass number A of the radionuclide is within a fraction of 1% of the molar mass expressed in g/mol and can be used as an approximation.
Specific radioactivity a is defined as radioactivity per unit mass of the radionuclide:
Thus, specific radioactivity can also be described by
This equation is simplified to
When the unit of half-life is in years instead of seconds:
For example, specific radioactivity of radium-226 with a half-life of 1600 years is obtained as
This value derived from radium-226 was defined as unit of radioactivity known as the curie (Ci).
Experimentally measured specific activity can be used to calculate the half-life of a radionuclide.
Where decay constant λ is related to specific radioactivity a by the following equation:
Therefore, the half-life can also be described by
One gram of rubidium-87 and a radioactivity count rate that, after taking solid angle effects into account, is consistent with a decay rate of 3200 decays per second corresponds to a specific activity of 3.2×106 Bq/kg. Rubidium atomic mass is 87 g/mol, so one gram is 1/87 of a mole. Plugging in the numbers:
This section may need to be cleaned up. It has been merged from Becquerel . |
For a given mass (in grams) of an isotope with atomic mass (in g/mol) and a half-life of (in s), the radioactivity can be calculated using:
With = 6.02214076×1023 mol−1, the Avogadro constant.
Since is the number of moles (), the amount of radioactivity can be calculated by:
For instance, on average each gram of potassium contains 117 micrograms of 40K (all other naturally occurring isotopes are stable) that has a of 1.277×109 years = 4.030×1016 s, [4] and has an atomic mass of 39.964 g/mol, [5] so the amount of radioactivity associated with a gram of potassium is 30 Bq.
Isotope | Half-life | Mass of 1 curie | Specific Activity (a) (activity per 1 kg) |
---|---|---|---|
232Th | 1.405×1010 years | 9.1 tonnes | 4.07 MBq (110 μCi or 4.07 Rd) |
238U | 4.471×109 years | 2.977 tonnes | 12.58 MBq (340 μCi, or 12.58 Rd) |
235U | 7.038×108 years | 463 kg | 79.92 MBq (2.160 mCi, or 79.92 Rd) |
40K | 1.25×109 years | 140 kg | 262.7 MBq (7.1 mCi, or 262.7 Rd) |
129I | 15.7×106 years | 5.66 kg | 6.66 GBq (180 mCi, or 6.66 kRd) |
99Tc | 211×103 years | 58 g | 629 GBq (17 Ci, or 629 kRd) |
239Pu | 24.11×103 years | 16 g | 2.331 TBq (63 Ci, or 2.331 MRd) |
240Pu | 6563 years | 4.4 g | 8.51 TBq (230 Ci, or 8.51MRd) |
14C | 5730 years | 0.22 g | 166.5 TBq (4.5 kCi, or 166.5 MRd) |
226Ra | 1601 years | 1.01 g | 36.63 TBq (990 Ci, or 36.63 MRd) |
241Am | 432.6 years | 0.29 g | 126.91 TBq (3.43 kCi, or 126.91 MRd) |
238Pu | 88 years | 59 mg | 629 TBq (17 kCi, or 629 MRd) |
137Cs | 30.17 years | 12 mg | 3.071 PBq (83 kCi, or 3.071 GRd) |
90Sr | 28.8 years | 7.2 mg | 5.143 PBq (139 kCi, or 5.143 GRd) |
241Pu | 14 years | 9.4 mg | 3.922 PBq (106 kCi, or 3.922 GRd) |
3H | 12.32 years | 104 μg | 355.977 PBq (9.621 MCi, or 355.977 GRd) |
228Ra | 5.75 years | 3.67 mg | 10.101 PBq (273 kCi, or 10.101 GRd) |
60Co | 1925 days | 883 μg | 41.884 PBq (1.132 MCi, or 41.884 GRd) |
210Po | 138 days | 223 μg | 165.908 PBq (4.484 MCi, or 165.908 GRd) |
131I | 8.02 days | 8 μg | 4.625 EBq (125 MCi, or 4.625 TRd) |
123I | 13 hours | 518 ng | 71.41 EBq (1.93 GCi, or 71.41 TRd) |
212Pb | 10.64 hours | 719 ng | 51.43 EBq (1.39 GCi, or 51.43 TRd) |
The specific activity of radionuclides is particularly relevant when it comes to select them for production for therapeutic pharmaceuticals, as well as for immunoassays or other diagnostic procedures, or assessing radioactivity in certain environments, among several other biomedical applications. [6] [7] [8] [9] [10] [11]
Half-life is the time required for a quantity to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive. The term is also used more generally to characterize any type of exponential decay. For example, the medical sciences refer to the biological half-life of drugs and other chemicals in the human body. The converse of half-life is doubling time.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time between production errors, or length along a roll of fabric in the weaving manufacturing process. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.
The decay energy is the energy change of a nucleus having undergone a radioactive decay. Radioactive decay is the process in which an unstable atomic nucleus loses energy by emitting ionizing particles and radiation. This decay, or loss of energy, results in an atom of one type transforming to an atom of a different type.
The curie is a non-SI unit of radioactivity originally defined in 1910. According to a notice in Nature at the time, it was to be named in honour of Pierre Curie, but was considered at least by some to be in honour of Marie Curie as well, and is in later literature considered to be named for both.
Radioactive decay is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the electromagnetism and nuclear force.
In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.
A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation, where N is the quantity and λ (lambda) is a positive rate called the exponential decay constant, disintegration constant, rate constant, or transformation constant:
Stellar dynamics is the branch of astrophysics which describes in a statistical way the collective motions of stars subject to their mutual gravity. The essential difference from celestial mechanics is that the number of body
In pharmacokinetics, the effective half-life is the rate of accumulation or elimination of a biochemical or pharmacological substance in an organism; it is the analogue of biological half-life when the kinetics are governed by multiple independent mechanisms. This is seen when there are multiple mechanisms of elimination, or when a drug occupies multiple pharmacological compartments. It reflects the cumulative effect of the individual half-lives, as observed by the changes in the actual serum concentration of a drug under a given dosing regimen. The complexity of biological systems means that most pharmacological substances do not have a single mechanism of elimination, and hence the observed or effective half-life does not reflect that of a single process, but rather the summation of multiple independent processes.
In physical systems, damping is the loss of energy of an oscillating system by dissipation. Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. Examples of damping include viscous damping in a fluid, surface friction, radiation, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes. Damping is not to be confused with friction, which is a type of dissipative force acting on a system. Friction can cause or be a factor of damping.
Decay correction is a method of estimating the amount of radioactive decay at some set time before it was actually measured.
In nuclear physics, secular equilibrium is a situation in which the quantity of a radioactive isotope remains constant because its production rate is equal to its decay rate.
Plasma parameters define various characteristics of a plasma, an electrically conductive collection of charged and neutral particles of various species that responds collectively to electromagnetic forces. Such particle systems can be studied statistically, i.e., their behaviour can be described based on a limited number of global parameters instead of tracking each particle separately.
Covariance matrix adaptation evolution strategy (CMA-ES) is a particular kind of strategy for numerical optimization. Evolution strategies (ES) are stochastic, derivative-free methods for numerical optimization of non-linear or non-convex continuous optimization problems. They belong to the class of evolutionary algorithms and evolutionary computation. An evolutionary algorithm is broadly based on the principle of biological evolution, namely the repeated interplay of variation and selection: in each generation (iteration) new individuals are generated by variation of the current parental individuals, usually in a stochastic way. Then, some individuals are selected to become the parents in the next generation based on their fitness or objective function value . Like this, individuals with better and better -values are generated over the generation sequence.
In probability theory and statistics, the Conway–Maxwell–Poisson distribution is a discrete probability distribution named after Richard W. Conway, William L. Maxwell, and Siméon Denis Poisson that generalizes the Poisson distribution by adding a parameter to model overdispersion and underdispersion. It is a member of the exponential family, has the Poisson distribution and geometric distribution as special cases and the Bernoulli distribution as a limiting case.
In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. It can also be used for the number of events in other types of intervals than time, and in dimension greater than 1.
Banana equivalent dose (BED) is an informal unit of measurement of ionizing radiation exposure, intended as a general educational example to compare a dose of radioactivity to the dose one is exposed to by eating one average-sized banana. Bananas contain naturally occurring radioactive isotopes, particularly potassium-40 (40K), one of several naturally occurring isotopes of potassium. One BED is often correlated to 10−7 sievert ; however, in practice, this dose is not cumulative, as the potassium in foods is excreted in urine to maintain homeostasis. The BED is only meant as an educational exercise and is not a formally adopted dose measurement.
In chemistry, the molar absorption coefficient or molar attenuation coefficient is a measurement of how strongly a chemical species absorbs, and thereby attenuates, light at a given wavelength. It is an intrinsic property of the species. The SI unit of molar absorption coefficient is the square metre per mole, but in practice, quantities are usually expressed in terms of M−1⋅cm−1 or L⋅mol−1⋅cm−1. In older literature, the cm2/mol is sometimes used; 1 M−1⋅cm−1 equals 1000 cm2/mol. The molar absorption coefficient is also known as the molar extinction coefficient and molar absorptivity, but the use of these alternative terms has been discouraged by the IUPAC.
Potassium–calcium dating, abbreviated K–Ca dating, is a radiometric dating method used in geochronology. It is based upon measuring the ratio of a parent isotope of potassium to a daughter isotope of calcium. This form of radioactive decay is accomplished through beta decay.
There is a strong scientific consensus that greenhouse effect due to carbon dioxide is a main driver of climate change. Following is an illustrative model meant for a pedagogical purpose, showing the main physical determinants of the effect.