Caesium-137

Last updated

Caesium-137, 137Cs
HD.17.095 (11966576463).jpg
A sealed caesium-137 radioactive source
General
Symbol 137Cs
Names caesium-137, 137Cs, Cs-137
Protons (Z)55
Neutrons (N)82
Nuclide data
Natural abundance 0 (trace)
Half-life (t1/2)30.05±0.08 years [1]
Isotope mass 136.907 Da
Spin 72+
Parent isotopes 137Xe  (β)
Decay products 137mBa
137Ba
Decay modes
Decay mode Decay energy (MeV)
β- (beta decay)0.5120 [2]
γ (gamma-rays)0.6617
Isotopes of caesium
Complete table of nuclides

Caesium-137 (137
55
Cs
), cesium-137 (US), [7] or radiocaesium, is a radioactive isotope of caesium that is formed as one of the more common fission products by the nuclear fission of uranium-235 and other fissionable isotopes in nuclear reactors and nuclear weapons. Trace quantities also originate from spontaneous fission of uranium-238. It is among the most problematic of the short-to-medium-lifetime fission products. Caesium-137 has a relatively low boiling point of 671 °C (1,240 °F) and easily becomes volatile when released suddenly at high temperature, as in the case of the Chernobyl nuclear accident and with atomic explosions, and can travel very long distances in the air. After being deposited onto the soil as radioactive fallout, it moves and spreads easily in the environment because of the high water solubility of caesium's most common chemical compounds, which are salts. Caesium-137 was discovered by Glenn T. Seaborg and Margaret Melhase.

Contents

Decay

Cs-137-decay.svg
137Cs decay scheme showing half-lives, daughter nuclides, and types and proportion of radiation emitted.
Caesium-137 Gamma Ray Spectrum-en.svg
137Cs gamma spectrum. The characteristic 662 keV peak does not originate directly from 137Cs, but from the decay of 137mBa to its stable state.

Caesium-137 has a half-life of about 30.05 years. [1] About 94.6% decays by beta emission to a metastable nuclear isomer of barium: barium-137m (137mBa, Ba-137m). The remainder directly populates the ground state of 137Ba, which is stable. Barium-137m has a half-life of about 153 seconds, and is responsible for all of the gamma ray emissions in samples of 137Cs. Barium-137m decays to the ground state by emission of photons having energy 0.6617 MeV. [8] A total of 85.1% of 137Cs decay generates gamma ray emission in this manner. One gram of 137Cs has an activity of 3.215  terabecquerel (TBq). [9]

Uses

Caesium-137 has a number of practical uses. In small amounts, it is used to calibrate radiation-detection equipment. [10] In medicine, it is used in radiation therapy. [10] In industry, it is used in flow meters, thickness gauges, [10] moisture-density gauges (for density readings, with americium-241/beryllium providing the moisture reading), [11] and in borehole logging devices. [12]

Caesium-137 is not widely used for industrial radiography because it is hard to obtain a very high specific activity material with a well defined (and small) shape as caesium from used nuclear fuel contains stable caesium-133 and also long-lived caesium-135. Isotope separation is too costly compared to cheaper alternatives. Also the higher specific activity caesium sources tend to be made from very soluble caesium chloride (CsCl), as a result if a radiography source was damaged it would increase the spread of the contamination. It is possible to make water insoluble caesium sources (with various ferrocyanide compounds such as Ni
2
Fe(CN)
6
, and ammonium ferric hexacyano ferrate (AFCF), Giese salt, ferric ammonium ferrocyanide but their specific activity will be much lower. Other chemically inert caesium compounds include caesium-aluminosilicate-glasses akin to the natural mineral pollucite. The latter has been used in demonstration of chemically stable water-insoluble forms of nuclear waste for disposal in deep geological repositories. A large emitting volume will harm the image quality in radiography. The isotopes 192
Ir
and 60
Co
are preferred for radiography, since iridium and cobalt are chemically non-reactive metals and can be obtained with much higher specific activities by the activation of stable 191
Ir
and 59
Co
in high flux reactors. However, while 137
Cs
is a waste product produced in great quantities in nuclear fission reactors, 192
Ir
and 60
Co
are specifically produced in commercial and research reactors and their life cycle entails the destruction of the involved high-value elements. Cobalt-60 decays to stable nickel, whereas iridium-192 can decay to either stable osmium or platinum. Due to the residual radioactivity and legal hurdles, the resulting material is not commonly recovered even from "spent" radioactive sources, meaning in essence that the entire mass is "lost" for non-radioactive uses.

As an almost purely synthetic isotope, caesium-137 has been used to date wine and detect counterfeits [13] and as a relative-dating material for assessing the age of sedimentation occurring after 1945. [14]

Caesium-137 is also used as a radioactive tracer in geologic research to measure soil erosion and deposition; its affinity for fine sediments is useful in this application. [15]

Health risks

Caesium-137 reacts with water, producing a water-soluble compound (caesium hydroxide). The biological behaviour of caesium is similar to that of potassium [16] and rubidium. After entering the body, caesium gets more or less uniformly distributed throughout the body, with the highest concentrations in soft tissue. [17] :114 However, unlike group 2 radionuclides like radium and strontium-90, caesium does not bioaccumulate and is excreted relatively quickly. The biological half-life of caesium is about 70 days. [18]

A 1961 experiment showed that mice dosed with 21.5  μCi/g had a 50% fatality within 30 days (implying an LD50 of 245 μg/kg). [19] A similar experiment in 1972 showed that when dogs are subjected to a whole body burden of 3800  μCi/kg (140 MBq/kg, or approximately 44 μg/kg) of caesium-137 (and 950 to 1400 rads), they die within 33 days, while animals with half of that burden all survived for a year. [20]

Important researches have shown a remarkable concentration of 137Cs in the exocrine cells of the pancreas, which are those most affected by cancer. [21] [22] [23] In 2003, in autopsies performed on 6 children who died in the polluted area near Chernobyl (of reasons not directly linked to the Chernobyl disaster; mostly sepsis), where they also reported a higher incidence of pancreatic tumors, Bandazhevsky found a concentration of 137Cs 3.9 times higher than in their livers (1359 vs 347 Bq/kg, equivalent to 36 and 9.3 nCi/kg in these organs, 600 Bq/kg = 16 nCi/kg in the body according to measurements), thus demonstrating that pancreatic tissue is a strong accumulator and secretor in the intestine of radioactive cesium. [24] Accidental ingestion of caesium-137 can be treated with Prussian blue (FeIII
4
[FeII
(CN)
6
]
3
), which binds to it chemically and reduces the biological half-life to 30 days. [25]

Environmental contamination

The ten highest deposits of caesium-137 from U.S. nuclear testing at the Nevada Test Site. Test explosions "Simon" and "Harry" were both from Operation Upshot-Knothole in 1953, while the test explosions "George" and "How" were from Operation Tumbler-Snapper in 1952. Cs-137 from nuclear tests vector.svg
The ten highest deposits of caesium-137 from U.S. nuclear testing at the Nevada Test Site. Test explosions "Simon" and "Harry" were both from Operation Upshot–Knothole in 1953, while the test explosions "George" and "How" were from Operation Tumbler–Snapper in 1952.
t½
(year)
Yield
(%)
Q
(keV)
βγ
155Eu 4.760.0803252βγ
85Kr 10.760.2180687βγ
113mCd 14.10.0008316β
90Sr 28.94.5052826β
137Cs 30.236.3371176βγ
121mSn 43.90.00005390βγ
151Sm 94.60.531477β

Caesium-137, along with other radioactive isotopes caesium-134, iodine-131, xenon-133, and strontium-90, were released into the environment during nearly all nuclear weapon tests and some nuclear accidents, most notably the Chernobyl disaster and the Fukushima Daiichi disaster.

Caesium-137 in the environment is substantially anthropogenic (human-made). Caesium-137 is produced from the nuclear fission of plutonium and uranium, and decays into barium-137. [26] By observing the characteristic gamma rays emitted by this isotope, one can determine whether the contents of a given sealed container were made before or after the first atomic bomb explosion (Trinity test, 16 July 1945), which spread some of it into the atmosphere, quickly distributing trace amounts of it around the globe. This procedure has been used by researchers to check the authenticity of certain rare wines, most notably the purported "Jefferson bottles". [27] Surface soils and sediments are also dated by measuring the activity of 137Cs.

Nuclear bomb fallout

Bombs in the arctic area of Novaja Zemlja and bombs detonated in or near the stratosphere released cesium-137 that landed in upper Lapland, Finland. Measurements of cesium-137 in 1960's was reportedly 45,000 becquerels. Figures from 2011 have a mid range of about 1,100 becquerels, but strangely, cancer cases are no more common there than elsewhere. [28] [29] [30]

Chernobyl disaster

As of today and for the next few hundred years or so, caesium-137 and strontium-90 continue to be the principal source of radiation in the zone of alienation around the Chernobyl nuclear power plant, and pose the greatest risk to health, owing to their approximately 30 year half-life and biological uptake. The mean contamination of caesium-137 in Germany following the Chernobyl disaster was 2000 to 4000 Bq/m2.[ citation needed ] This corresponds to a contamination of 1 mg/km2 of caesium-137, totaling about 500 grams deposited over all of Germany. In Scandinavia, some reindeer and sheep exceeded the Norwegian legal limit (3000 Bq/kg) 26 years after Chernobyl. [31] As of 2016, the Chernobyl caesium-137 has decayed by half, but could have been locally concentrated by much larger factors.

Fukushima Daiichi disaster

Calculated caesium-137 concentration in the air after the Fukushima nuclear disaster, 25 March 2011. Fukushima- Panache-25-mars.svg
Calculated caesium-137 concentration in the air after the Fukushima nuclear disaster, 25 March 2011.

In April 2011, elevated levels of caesium-137 were also being found in the environment after the Fukushima Daiichi nuclear disasters in Japan. In July 2011, meat from 11 cows shipped to Tokyo from Fukushima Prefecture was found to have 1,530 to 3,200  becquerels per kilogram of 137Cs, considerably exceeding the Japanese legal limit of 500 becquerels per kilogram at that time. [32] In March 2013, a fish caught near the plant had a record 740,000 becquerels per kilogram of radioactive caesium, above the 100 becquerels per kilogram government limit. [33] A 2013 paper in Scientific Reports found that for a forest site 50 km from the stricken plant, 137Cs concentrations were high in leaf litter, fungi and detritivores, but low in herbivores. [34] By the end of 2014, "Fukushima-derived radiocaesium had spread into the whole western North Pacific Ocean", transported by the North Pacific current from Japan to the Gulf of Alaska. It has been measured in the surface layer down to 200 meters and south of the current area down to 400 meters. [35]

Cesium-137 is reported to be the major health concern in Fukushima. A number of techniques are being considered that will be able to strip out 80% to 95% of the caesium from contaminated soil and other materials efficiently and without destroying the organic material in the soil. These include hydrothermal blasting. The caesium precipitated with ferric ferrocyanide (Prussian blue) would be the only waste requiring special burial sites. [36] The aim is to get annual exposure from the contaminated environment down to 1  mSv above background. The most contaminated area where radiation doses are greater than 50 mSv/year must remain off limits, but some areas that are currently less than 5 mSv/year may be decontaminated, allowing 22,000 residents to return.[ citation needed ]

Incidents and accidents

Caesium-137 gamma sources have been involved in several radiological accidents and incidents.

1987 Goiânia, Goiás, Brazil

In the Goiânia accident of 1987, an improperly disposed of radiation therapy system from an abandoned clinic in Goiânia, Brazil, was removed, then cracked to be sold in junkyards. The glowing caesium salt was then to be sold to curious, unadvised buyers. [37] This led to four confirmed deaths and several serious injuries from radiation contamination. [38] [39]

1989 Kramatorsk, Ukraine

The Kramatorsk radiological accident happened in 1989 when a small capsule 8x4 mm in size of caesium-137 was found inside the concrete wall of an apartment building in Kramatorsk, Ukrainian SSR. It is believed that the capsule, originally a part of a measurement device, was lost in the late 1970s and ended up mixed with gravel used to construct the building in 1980. Over 9 years, two families had lived in the apartment. By the time the capsule was discovered, 6 residents of the building had died, 4 from leukemia and 17 more receiving varying doses of radiation. [40]

1994 Tammiku, Estonia

The 1994 Tammiku incident involved the theft of radioactive material from a nuclear waste storage facility in Männiku, Saku Parish, Harju County, Estonia. Three brothers, unaware of the facility's nature, broke into a shed while scavenging for scrap metal. One of the brothers received a 4,000 rad whole-body dose from a caesium-137 source that had been released from a damaged container, succumbing to radiation poisoning 12 days later.[ citation needed ]

1997 Georgia

In 1997, several Georgian soldiers suffered radiation poisoning and burns. They were eventually traced back to training sources left abandoned, forgotten, and unlabeled after the dissolution of the Soviet Union. One was a caesium-137 pellet in a pocket of a shared jacket that released about 130,000 times the level of background radiation at 1 meter distance. [41]

1998 Los Barrios, Cádiz, Spain

In the Acerinox accident of 1998, the Spanish recycling company Acerinox accidentally melted down a mass of radioactive caesium-137 that came from a gamma-ray generator. [42]

2009 Tongchuan, Shaanxi, China

In 2009, a Chinese cement company (in Tongchuan, Shaanxi Province) was demolishing an old, unused cement plant and did not follow standards for handling radioactive materials. This caused some caesium-137 from a measuring instrument to be included with eight truckloads of scrap metal on its way to a steel mill, where the radioactive caesium was melted down into the steel. [43]

2015 University of Tromsø, Norway

In March 2015, the Norwegian University of Tromsø lost 8 radioactive samples, including samples of caesium-137, americium-241, and strontium-90. The samples were moved out of a secure location to be used for education. When the samples were supposed to be returned, the university was unable to find them. As of 4 November 2015, the samples are still missing. [44] [45]

2016 Helsinki, Finland

On 3 and 4 March 2016, unusually high levels of caesium-137 were detected in the air in Helsinki, Finland. According to STUK, the country's nuclear regulator, measurements showed 4,000 μBq/m3 – about 1,000 times the usual level. An investigation by the agency traced the source to a building from which STUK and a radioactive waste treatment company operate. [46] [47]

2019 Seattle, Washington, United States

Thirteen people were exposed to caesium-137 in May 2019 at the Research and Training building in the Harborview Medical Center complex. A contract crew was transferring the caesium from the lab to a truck when the powder was spilled. Five people were decontaminated and released, but 8 who were more directly exposed were taken to the hospital while the research building was evacuated. [48]

2023 Western Australia, Australia

Public health authorities in Western Australia issued an emergency alert for a stretch of road measuring about 1,400 km after a capsule containing caesium-137 was lost in transport on 25 January 2023. The 8 mm capsule contained a small quantity of the radioactive material when it disappeared from a truck. The State Government immediately launched a search, with the WA Department of Health's chief health officer Andrew Robertson warning an exposed person could expect to receive the equivalent of "about 10 X-rays an hour". Experts warned, if the capsule were found, the public should stay at least 5 metres away. [49] The capsule was found on 1 February 2023. [50]

2023 Prachin Buri, Thailand

A caesium-137 capsule went missing from a steam power plant in Prachin Buri province, Thailand on 23 February 2023, triggering a search by officials from Thailand's Office of Atoms for Peace (OAP) and the Prachin Buri provincial administration. However, the Thai public was not notified until 14 March. [51]

On 20 March, the Secretary-General of the OAP and the governor of Prachin Buri held a press conference stating that they had found caesium-137 contaminated furnace dust at a steel melting plant in Kabin Buri district. [52]

2024 Khabarovsk, Russia

On Friday, 5 April an emergency regime was introduced in the Russian city of Khabarovsk after a local resident accidentally discovered that radiation levels had jumped sharply in one of the industrial areas of the city. According to volunteers of the dosimetric control group, the dosimeter at the NP site showed up to 800 microsieverts, which is 1600 times the safe value.

Employees of the Ministry of Emergency Situations fenced off the area of 30 by 30 meters (98 by 98 ft), where they found a capsule with caesium from a defectoscope. The find was placed in a protective container and taken away for disposal. This was first reported by the Novaya Gazeta. [53]

See also

Related Research Articles

<span class="mw-page-title-main">Caesium</span> Chemical element with atomic number 55 (Cs)

Caesium is a chemical element; it has symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of 28.5 °C, which makes it one of only five elemental metals that are liquid at or near room temperature. Caesium has physical and chemical properties similar to those of rubidium and potassium. It is pyrophoric and reacts with water even at −116 °C (−177 °F). It is the least electronegative stable element, with a value of 0.79 on the Pauling scale. It has only one stable isotope, caesium-133. Caesium is mined mostly from pollucite. Caesium-137, a fission product, is extracted from waste produced by nuclear reactors. It has the largest atomic radius of all elements whose radii have been measured or calculated, at about 260 picometres.

A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferred to one of its electrons to release it as a conversion electron; or used to create and emit a new particle (alpha particle or beta particle) from the nucleus. During those processes, the radionuclide is said to undergo radioactive decay. These emissions are considered ionizing radiation because they are energetic enough to liberate an electron from another atom. The radioactive decay can produce a stable nuclide or will sometimes produce a new unstable radionuclide which may undergo further decay. Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay. However, for a collection of atoms of a single nuclide the decay rate, and thus the half-life (t1/2) for that collection, can be calculated from their measured decay constants. The range of the half-lives of radioactive atoms has no known limits and spans a time range of over 55 orders of magnitude.

<span class="mw-page-title-main">Beta particle</span> Ionizing radiation

A beta particle, also called beta ray or beta radiation, is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β decay and β+ decay, which produce electrons and positrons, respectively.

<span class="mw-page-title-main">Curie (unit)</span> Non-SI unit of radioactivity

The curie is a non-SI unit of radioactivity originally defined in 1910. According to a notice in Nature at the time, it was to be named in honour of Pierre Curie, but was considered at least by some to be in honour of Marie Curie as well, and is in later literature considered to be named for both.

<span class="mw-page-title-main">Specific activity</span> Activity per unit mass of a radionuclide

Specific activity is the activity per unit mass of a radionuclide and is a physical property of that radionuclide. It is usually given in units of becquerel per kilogram (Bq/kg), but another commonly used unit of specific activity is the curie per gram (Ci/g).

<span class="mw-page-title-main">Radioactive contamination</span> Undesirable radioactive elements on surfaces or in gases, liquids, or solids

Radioactive contamination, also called radiological pollution, is the deposition of, or presence of radioactive substances on surfaces or within solids, liquids, or gases, where their presence is unintended or undesirable.

<span class="mw-page-title-main">Nuclear fission product</span> Atoms or particles produced by nuclear fission

Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release of heat energy, and gamma rays. The two smaller nuclei are the fission products..

Caesium (55Cs) has 41 known isotopes, the atomic masses of these isotopes range from 112 to 152. Only one isotope, 133Cs, is stable. The longest-lived radioisotopes are 135Cs with a half-life of 1.33 million years, 137
Cs
with a half-life of 30.1671 years and 134Cs with a half-life of 2.0652 years. All other isotopes have half-lives less than 2 weeks, most under an hour.

Radionuclides which emit gamma radiation are valuable in a range of different industrial, scientific and medical technologies. This article lists some common gamma-emitting radionuclides of technological importance, and their properties.

Iodine-125 (125I) is a radioisotope of iodine which has uses in biological assays, nuclear medicine imaging and in radiation therapy as brachytherapy to treat a number of conditions, including prostate cancer, uveal melanomas, and brain tumors. It is the second longest-lived radioisotope of iodine, after iodine-129.

<span class="mw-page-title-main">Effects of the Chernobyl disaster</span> Assessment of Chernobyls impact on Earth since 1986

The Chernobyl disaster of 26 April 1986 triggered the release of radioactive contamination into the atmosphere in the form of both particulate and gaseous radioisotopes. As of 2024, it remains the world's largest known release of radioactivity into the natural environment.

<span class="mw-page-title-main">Fission products (by element)</span> Breakdown of nuclear fission results

This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium. The isotopes are listed by element, in order by atomic number.

<span class="mw-page-title-main">Environmental radioactivity</span> Radioactivity naturally present within the Earth

Environmental radioactivity is part of the overall background radiation and is produced by radioactive materials in the human environment. While some radioisotopes, such as strontium-90 (90Sr) and technetium-99 (99Tc), are only found on Earth as a result of human activity, and some, like potassium-40 (40K), are only present due to natural processes, a few isotopes, such as tritium (3H), result from both natural processes and human activities. The concentration and location of some natural isotopes, particularly uranium-238 (238U), can be affected by human activity, such as nuclear weapons testing, which caused a global fallout, with up to 2.4 million deaths by 2020.

<span class="mw-page-title-main">Strontium-90</span> Radioactive isotope of strontium

Strontium-90 is a radioactive isotope of strontium produced by nuclear fission, with a half-life of 28.8 years. It undergoes β decay into yttrium-90, with a decay energy of 0.546 MeV. Strontium-90 has applications in medicine and industry and is an isotope of concern in fallout from nuclear weapons, nuclear weapons testing, and nuclear accidents.

<span class="mw-page-title-main">Comparison of Chernobyl and other radioactivity releases</span>

This article compares the radioactivity release and decay from the Chernobyl disaster with various other events which involved a release of uncontrolled radioactivity.

<span class="mw-page-title-main">Technetium-99</span> Radioactive isotope produced by fission of uranium

Technetium-99 (99Tc) is an isotope of technetium which decays with a half-life of 211,000 years to stable ruthenium-99, emitting beta particles, but no gamma rays. It is the most significant long-lived fission product of uranium fission, producing the largest fraction of the total long-lived radiation emissions of nuclear waste. Technetium-99 has a fission product yield of 6.0507% for thermal neutron fission of uranium-235.

Long-lived fission products (LLFPs) are radioactive materials with a long half-life produced by nuclear fission of uranium and plutonium. Because of their persistent radiotoxicity, it is necessary to isolate them from humans and the biosphere and to confine them in nuclear waste repositories for geological periods of time. The focus of this article is radioisotopes (radionuclides) generated by fission reactors.

<span class="mw-page-title-main">Christopher Busby</span> British scientist

Christopher Busby is a British scientist primarily studying the health effects of internal ionising radiation. Busby is a director of Green Audit Limited, a private company, and scientific advisor to the Low Level Radiation Campaign (LLRC).

<span class="mw-page-title-main">Radiation effects from the Fukushima Daiichi nuclear disaster</span> Effects of radiation released from the Fukushima nuclear disaster

The radiation effects from the Fukushima Daiichi nuclear disaster are the observed and predicted effects as a result of the release of radioactive isotopes from the Fukushima Daiichii Nuclear Power Plant following the 2011 Tōhoku 9.0 magnitude earthquake and tsunami. The release of radioactive isotopes from reactor containment vessels was a result of venting in order to reduce gaseous pressure, and the discharge of coolant water into the sea. This resulted in Japanese authorities implementing a 30-km exclusion zone around the power plant and the continued displacement of approximately 156,000 people as of early 2013. The number of evacuees has declined to 49,492 as of March 2018. Radioactive particles from the incident, including iodine-131 and caesium-134/137, have since been detected at atmospheric radionuclide sampling stations around the world, including in California and the Pacific Ocean.

From 1946 through 1993, thirteen countries used ocean disposal or ocean dumping as a method to dispose of nuclear/radioactive waste with an approximation of 200,000 tons sourcing mainly from the medical, research and nuclear industry.

References

  1. 1 2 Bé, M. M., Chisté, V., Dulieu, C., Browne, E., Baglin, C., Chechev, V., ... & Lee, K. B. (2006). Table of Radionuclides (vol. 3–A= 3 to 244). Monographie BIPM, 5.
  2. "137
    55
    Cs
    82"
    . WWW Table of Radioactive Isotopes. LBNL Isotopes Project - LUNDS Universitet. Archived from the original on 22 May 2015. Retrieved 14 March 2009.
  3. International Union of Pure and Applied Chemistry (2005). Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005). Cambridge (UK): RSCIUPAC. ISBN   0-85404-438-8. pp. 248–49. Electronic version..
  4. Coghill, Anne M.; Garson, Lorrin R., eds. (2006). The ACS Style Guide: Effective Communication of Scientific Information (3rd ed.). Washington, D.C.: American Chemical Society. p.  127. ISBN   978-0-8412-3999-9.
  5. Coplen, T. B.; Peiser, H. S. (1998). "History of the recommended atomic-weight values from 1882 to 1997: a comparison of differences from current values to the estimated uncertainties of earlier values" (PDF). Pure Appl. Chem. 70 (1): 237–257. doi:10.1351/pac199870010237. S2CID   96729044.
  6. OED entry for "caesium". Second edition, 1989; online version June 2012. Retrieved 7 September 2012. Earlier version first published in New English Dictionary, 1888.
  7. Caesium is the spelling recommended by the International Union of Pure and Applied Chemistry (IUPAC). [3] The American Chemical Society (ACS) has used the spelling cesium since 1921, [4] [5] following Webster's New International Dictionary. The element was named after the Latin word caesius , meaning "bluish grey". [6] In medieval and early modern writings caesius was spelled with the ligature æ as cæsius; hence, an alternative but now old-fashioned orthography is cæsium. More spelling explanation at ae/oe vs e.
  8. Delacroix, D.; Guerre, J. P.; Leblanc, P.; Hickman, C. (2002). Radionuclide and Radiation Protection Handbook. Nuclear Technology Publishing. ISBN   978-1870965873.
  9. Bunting, R. L. (1975). "Nuclear Data Sheets for A=137". Nuclear Data Sheets 15. 335.
  10. 1 2 3 "CDC Radiation Emergencies | Radioisotope Brief: Cesium-137 (Cs-137)". CDC. Retrieved 5 November 2013.
  11. "Cesium | Radiation Protection | US EPA". EPA. 14 February 2023. Retrieved 30 March 2023.
  12. "Cesium-137 (Cs-137) for Oil Well Logging" . Retrieved 29 June 2024.
  13. "How Atomic Particles Helped Solve A Wine Fraud Mystery". NPR. 3 June 2014. Retrieved 4 March 2015.
  14. Williams, H. F. L. (1995). "Assessing the impact of weir construction on recent sedimentation using cesium-137". Environmental Geology. 26 (3): 166–171. Bibcode:1995EnGeo..26..166W. doi:10.1007/BF00768738. ISSN   0943-0105. S2CID   129177016.
  15. Loughran, Robert (1 June 1989). "The measurement of soil erosion". Progress in Physical Geography. 221 (2): 216–233. Bibcode:1989PrPG...13..216L. doi:10.1177/030913338901300203. S2CID   140599684.
  16. Avery, Simon V. (1995). "Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity". Journal of Industrial Microbiology. 14 (2): 76–84. doi: 10.1007/BF01569888 . ISSN   0169-4146. PMID   7766213. S2CID   21144768.
  17. Delacroix, D.; Guerre, J. P.; Leblanc, P.; Hickman, C. (2002). Radionuclide and Radiation Protection Data Handbook 2002 (2nd ed.). Nuclear Technology Publishing. ISBN   978-1-870965-87-3.
  18. R. Nave. "Biological Half-life". Hyperphysics .
  19. Moskalev, Yu. I. (1961). "Biological Effects of Cesium-137". In Lebedinskiĭ, A. V.; Moskalev, Yu. I. (eds.). Distribution, Biological Effects, and Migration of Radioactive Isotopes. Translation Series. United States Atomic Energy Commission (published April 1974). p. 220. AEC-tr-7512.
  20. Redman, H.C.; et al. (1972). "Toxicity of 137-CsCl in the Beagle. Early Biological Effects". Radiation Research . 50 (3): 629–648. Bibcode:1972RadR...50..629R. doi:10.2307/3573559. JSTOR   3573559. PMID   5030090.
  21. Nelson, Arne; Ullberg, Sven; Kristoffersson, Harry; Ronnback, Curt (May 1961). "Distribution of Radiocesium in Mice". Acta Radiologica. 55 (5): 374–384. doi: 10.3109/00016926109175132 . ISSN   0001-6926. PMID   13728254.{{cite journal}}: CS1 maint: date and year (link)
  22. Sodee, DB (January 1964). "HG-197, As a scanning Nucleotide". Letter to the Editor. J Nucl Med. 5 (5): 74–75. PMID   14113151.
  23. Venturi, Sebastiano (2020). "Correlation between radioactive cesium and the increase of pancreatic cancer: A Hypothesis". Biosfera. 12 (4): 21–30. doi: 10.24855/biosfera.v12i4.556 . S2CID   229377336.
  24. Bandazhevsky Y.I. (2003). "Chronic Cs-137 incorporation in children's organs". Swiss Med. Wkly. 133 (35–36): 488–90. doi: 10.4414/smw.2003.10226 . PMID   14652805. S2CID   28184979.
  25. "CDC Radiation Emergencies | Facts About Prussian Blue". CDC. Archived from the original on 20 October 2013. Retrieved 5 November 2013.
  26. Takeshi Okumura (21 October 2003). "The material flow of radioactive cesium-137 in the U.S. 2000" (PDF). epa.gov/. US Environmental Protection Agency.
  27. Peter Hellman; Mitch Frank (1 April 2010). "News Analysis: Christie's Is Counterfeit Crusader's Biggest Target". Wine Spectator. Retrieved 5 November 2013.
  28. Lapland reindeer herders still carrying radiation from Cold War nuclear tests Yle news. 5 April 2017
  29. Nuclear tests in the atmosphere STUK radiation and nuclear safety
  30. Salminen-Paatero, Susanna; Thölix, Laura; Kivi, Rigel; Paatero, Jussi (July 2019). "Nuclear contamination sources in surface air of Finnish Lapland in 1965–2011 studied by means of 137Cs, 90Sr, and total beta activity". Environmental Science and Pollution Research. 26 (21): 21511–21523. Bibcode:2019ESPR...2621511S. doi:10.1007/s11356-019-05451-0. ISSN   0944-1344. PMC   6647534 . PMID   31127522.
  31. Sandelson, Michael; Smith, Lyndsey (21 May 2012). "Higher radiation in Jotunheimen than first believed". The Foreigner. Archived from the original on 2 October 2018. Retrieved 21 May 2012.
  32. "High levels of caesium in Fukushima beef". Independent Online. 9 July 2011.
  33. "Fish near Fukushima reportedly contains high Cesium level". Huffington Post . 17 March 2013.
  34. Murakami, Masashi; Ohte, Nobuhito; Suzuki, Takahiro; Ishii, Nobuyoshi; Igarashi, Yoshiaki; Tanoi, Keitaro (2014). "Biological proliferation of cesium-137 through the detrital food chain in a forest ecosystem in Japan". Scientific Reports. 4: 3599. Bibcode:2014NatSR...4E3599M. doi:10.1038/srep03599. ISSN   2045-2322. PMC   3884222 . PMID   24398571.
  35. Kumamoto, Yuichiro; et al. (2017). "Radiation and analytical chemistry – Five years since the Fukushima Daiichi nuclear power plant accident". Special Articles. Bunseki Kagaku (in Japanese and English). 66 (3): 137–148. doi: 10.2116/bunsekikagaku.66.137 .
  36. Normile, Dennis (1 March 2013). "Cooling a hot zone". Science. 339 (6123): 1028–1029. Bibcode:2013Sci...339.1028N. doi:10.1126/science.339.6123.1028. PMID   23449572.
  37. Hill, Kyle (4 September 2021). "How one handful of powder contaminated a whole city". YouTube. Archived from the original on 21 December 2021. Retrieved 26 September 2021.
  38. The Radiological Accident in Goiânia (PDF). IAEA. 1988. ISBN   92-0-129088-8.
  39. "Vítima do césio-137 lembra depressão e preconceito após acidente". BBC Brasil. 26 April 2011.
  40. "Infected Apartment in Kramatorsk | Series 'The most radioactive zones on the planet' | OrangeSmile.com". www.orangesmile.com.
  41. Lluma, Diego (May–June 2000). "Former Soviet Union: What the Russians left behind". Bulletin of the Atomic Scientists. 56 (3): 14–17. doi:10.2968/056003005. S2CID   145248534.
  42. J.M. LaForge (1999). "Radioactive Caesium Spill Cooks Europe". Earth Island Journal . 14 (1). Archived from the original on 5 September 2008. Retrieved 28 March 2009.
  43. "Chinese 'find' radioactive ball". BBC News . 27 March 2009.
  44. "UiT har mistet radioaktivt stoff – kan ha blitt kastet". iTromsø. 4 November 2015.
  45. "Stort metallskap sporløst forsvunnet. Inneholder radioaktive stoffer". Dagbladet. 4 November 2015.
  46. "Cesium 137 now traced back to the property's garage and parts of its basement premises - Tiedote-en - STUK". www.stuk.fi. Retrieved 10 March 2016.
  47. Hannele Aaltonen. "Cesium-137 contamination at STUK's premises in March 2016" (PDF). IAEA . Retrieved 13 October 2018.
  48. Casey Martin (3 May 2019). "13 exposed to radioactivity". KUOW .
  49. "Emergency warning after tiny radioactive capsule lost during transport from Newman mine to Perth". The West Australian. 27 January 2023.
  50. "Missing radioactive capsule found in WA outback after frantic search". ABC News. 1 February 2023.
  51. "Frantic search for radioactive material missing from power plant in Prachin Buri". www.thaipbsworld.com. Retrieved 15 March 2023.
  52. "Caesium-137 found at local metal work in Prachin buri". Bangkok Post. Retrieved 20 March 2023.
  53. Skavron, Bogdan (5 April 2024). Надзвичайна ситуація у Хабаровську: радіаційний фон у 1600 разів перевищив норму. tsn.ua (in Ukrainian).

Bibliography