Commonly used gamma-emitting isotopes

Last updated

Radionuclides which emit gamma radiation are valuable in a range of different industrial, scientific and medical technologies. This article lists some common gamma-emitting radionuclides of technological importance, and their properties.

Contents

Fission products

Many artificial radionuclides of technological importance are produced as fission products within nuclear reactors. A fission product is a nucleus with approximately half the mass of a uranium or plutonium nucleus which is left over after such a nucleus has been "split" in a nuclear fission reaction.

Caesium-137 is one such radionuclide. It has a half-life of 30 years, and decays by beta decay without gamma ray emission to a metastable state of barium-137 ( 137m
Ba
). Barium-137m has a half-life of a 2.6 minutes and is responsible for all of the gamma ray emission in this decay sequence. The ground state of barium-137 is stable.

The photon energy (energy of a single gamma ray) of 137m
Ba
is about 662 keV. These gamma rays can be used, for example, in radiotherapy such as for the treatment of cancer, in food irradiation, or in industrial gauges or sensors. 137
Cs
is not widely used for industrial radiography as other nuclides, such as cobalt-60 or iridium-192, offer higher radiation output for a given volume.

Iodine-131 is another important gamma-emitting radionuclide produced as a fission product. With a short half-life of 8 days, this radioisotope is not of practical use in radioactive sources in industrial radiography or sensing. However, since iodine is a component of biological molecules such as thyroid hormones, iodine-131 is of great importance in nuclear medicine, and in medical and biological research as a radioactive tracer.

Lanthanum-140 is a decay product of barium-140, a common fission product. It is a potent gamma emitter. It was used in high quantities during the Manhattan Project for the RaLa Experiments.

Activation products

Some radionuclides, such as cobalt-60 and iridium-192, are made by the neutron irradiation of normal non-radioactive cobalt and iridium metal in a nuclear reactor, creating radioactive nuclides of these elements which contain extra neutrons, compared to the original stable nuclides.

In addition to their uses in radiography, both cobalt-60 (60
Co
) and iridium-192 (192
Ir
) are used in the radiotherapy of cancer. Cobalt-60 tends to be used in teletherapy units as a higher photon energy alternative to caesium-137, while iridium-192 tends to be used in a different mode of therapy, internal radiotherapy or brachytherapy. The iridium wires for brachytherapy are a palladium-coated iridium/palladium alloy wire made radioactive by neutron activation. This wire is then inserted into a tumor such as a breast tumor, and the tumor is irradiated by gamma ray photons from the wire. At the end of the treatment the wire is removed.

A rare but notable gamma source is sodium-24; this has a fairly short half-life of 15 hours, but it emits photons with very high energies (>2 MeV). It could be used for radiography of thick steel objects if the radiography occurred close to the point of production. Similarly to 60
Co
and 192
Ir
, it is formed by the neutron activation of the commonly found stable isotope.

Minor actinides

Americium-241 has been used as a source of low energy gamma photons, it has been used in some applications such as portable X-ray fluorescence equipment (XRF) and common household ionizing smoke detectors. Americium-241 is produced from 239
Pu
in nuclear reactors through multiple neutron captures and subsequent beta decays with the plutonium-239 itself being produced mostly from neutron capture and subsequent beta decays by 238
U
(99% of natural uranium and usually roughly 97% of low enriched uranium or MOX fuel).

Natural radioisotopes

Many years ago radium-226 and radon-222 were used as gamma-ray sources for industrial radiography: for instance, a radon-222 source was used to examine the mechanisms inside an unexploded V-1 flying bomb, while some of the early Bathyspheres could be examined using radium-226 to check for cracks. Because both radium and radon are very radiotoxic and very expensive due to their natural rarity, these natural radioisotopes have fallen out of use over the last half-century, replaced by artificially created radioisotopes. Radon therapy sits on the edge of radioactive quackery and genuine radiotherapy in part due to the lack of reliable data on the stated health benefits.

Table of some useful gamma emitting isotopes

Useful Gamma emitting isotopes
Isotopeatomic masshalf-lifeEmitted Gamma energy (MeV)Notes
Be-7753 d0.48
Na-22222.6 yr1.28
Na-242415 hr1.37
Mn-5454312 d0.84
Co-5757272 d0.122
Co-60605.265 yr1.17Co-60 emits two distinct gammas of high energy (total energy is 2.5 MeV) [1]
Co-60605.265 yr1.33used in industrial radiography
Ga-66669.4 hr1.04
Tc-99m996 hr0.14used in a variety of nuclear medicine imaging procedures
Pd-10310317 d0.021used in brachytherapy
Ag-1121123.13 hr0.62
Sn-113113115 d0.392
Te-13213277 hr0.23
I-12512560 d0.035used in brachytherapy
I-1311318 d0.36used in brachytherapy
Xe-1331335.24 d0.08
Cs-1341342.06 yr0.61
Cs-13713730.17 yr0.662sometimes still used in radiotherapy and industrial application for measuring the density, liquid level, humidity and many more
Ba-13313310.5 yr0.356
Ce-144144285 d0.13
Rn-2222223.8 d0.51
Ra-2262261600 yr0.19used for early radiotherapy (pre Cs-137 and Co-60 circa 1950's)
Am-241241432 yr0.06Used in most smoke detectors

Note only half lives between 100 min and 5,000 yr are listed as short half-lives are usually not practical to use, and long half-lives usually mean extremely low specific activity. d= day, hr = hour, yr = year.

See also

Related Research Articles

A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferred to one of its electrons to release it as a conversion electron; or used to create and emit a new particle (alpha particle or beta particle) from the nucleus. During those processes, the radionuclide is said to undergo radioactive decay. These emissions are considered ionizing radiation because they are energetic enough to liberate an electron from another atom. The radioactive decay can produce a stable nuclide or will sometimes produce a new unstable radionuclide which may undergo further decay. Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay. However, for a collection of atoms of a single nuclide the decay rate, and thus the half-life (t1/2) for that collection, can be calculated from their measured decay constants. The range of the half-lives of radioactive atoms has no known limits and spans a time range of over 55 orders of magnitude.

<span class="mw-page-title-main">Beta particle</span> Ionizing radiation

A beta particle, also called beta ray or beta radiation, is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus during the process of beta decay. There are two forms of beta decay, β decay and β+ decay, which produce electrons and positrons respectively.

<span class="mw-page-title-main">Stable nuclide</span> Nuclide that does not undergo radioactive decay

Stable nuclides are nuclides that are not radioactive and so do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes.

A synthetic radioisotope is a radionuclide that is not found in nature: no natural process or mechanism exists which produces it, or it is so unstable that it decays away in a very short period of time. Examples include technetium-95 and promethium-146. Many of these are found in, and harvested from, spent nuclear fuel assemblies. Some must be manufactured in particle accelerators.

<span class="mw-page-title-main">Decay energy</span> Energy change of a nucleus after radioactive decay

The decay energy is the energy change of a nucleus having undergone a radioactive decay. Radioactive decay is the process in which an unstable atomic nucleus loses energy by emitting ionizing particles and radiation. This decay, or loss of energy, results in an atom of one type transforming to an atom of a different type.

<span class="mw-page-title-main">Radioactive decay</span> Emissions from unstable atomic nuclei

Radioactive decay is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the electromagnetism and nuclear force.

A radioactive tracer, radiotracer, or radioactive label is a synthetic derivative of a natural compound in which one or more atoms have been replaced by a radionuclide. By virtue of its radioactive decay, it can be used to explore the mechanism of chemical reactions by tracing the path that the radioisotope follows from reactants to products. Radiolabeling or radiotracing is thus the radioactive form of isotopic labeling. In biological contexts, experiments that use radioisotope tracers are sometimes called radioisotope feeding experiments.

<span class="mw-page-title-main">Nuclear fission product</span> Atoms or particles produced by nuclear fission

Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release of heat energy, and gamma rays. The two smaller nuclei are the fission products..

<span class="mw-page-title-main">Neutron activation</span> Induction of radioactivity by neutron radiation

Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emitting gamma rays, or particles such as beta particles, alpha particles, fission products, and neutrons. Thus, the process of neutron capture, even after any intermediate decay, often results in the formation of an unstable activation product. Such radioactive nuclei can exhibit half-lives ranging from small fractions of a second to many years.

<span class="mw-page-title-main">Isotopes of iodine</span> Nuclides with atomic number of 53 but with different mass numbers

There are 37 known isotopes of iodine (53I) from 108I to 144I; all undergo radioactive decay except 127I, which is stable. Iodine is thus a monoisotopic element.

Caesium (55Cs) has 41 known isotopes, the atomic masses of these isotopes range from 112 to 152. Only one isotope, 133Cs, is stable. The longest-lived radioisotopes are 135Cs with a half-life of 1.33 million years, 137
Cs
with a half-life of 30.1671 years and 134Cs with a half-life of 2.0652 years. All other isotopes have half-lives less than 2 weeks, most under an hour.

<span class="mw-page-title-main">Cobalt-60</span> Radioactive isotope of cobalt

Cobalt-60 (60Co) is a synthetic radioactive isotope of cobalt with a half-life of 5.2714 years. It is produced artificially in nuclear reactors. Deliberate industrial production depends on neutron activation of bulk samples of the monoisotopic and mononuclidic cobalt isotope 59
Co
. Measurable quantities are also produced as a by-product of typical nuclear power plant operation and may be detected externally when leaks occur. In the latter case the incidentally produced 60
Co
is largely the result of multiple stages of neutron activation of iron isotopes in the reactor's steel structures via the creation of its 59
Co
precursor. The simplest case of the latter would result from the activation of 58
Fe
. 60
Co
undergoes beta decay to the stable isotope nickel-60. The activated cobalt nucleus emits two gamma rays with energies of 1.17 and 1.33 MeV, hence the overall equation of the nuclear reaction is: 59
27
Co
+ n → 60
27
Co
60
28
Ni
+ e + 2 γ

<span class="mw-page-title-main">Caesium-137</span> Radioactive isotope of caesium

Caesium-137, cesium-137 (US), or radiocaesium, is a radioactive isotope of caesium that is formed as one of the more common fission products by the nuclear fission of uranium-235 and other fissionable isotopes in nuclear reactors and nuclear weapons. Trace quantities also originate from spontaneous fission of uranium-238. It is among the most problematic of the short-to-medium-lifetime fission products. Caesium-137 has a relatively low boiling point of 671 °C (1,240 °F) and easily becomes volatile when released suddenly at high temperature, as in the case of the Chernobyl nuclear accident and with atomic explosions, and can travel very long distances in the air. After being deposited onto the soil as radioactive fallout, it moves and spreads easily in the environment because of the high water solubility of caesium's most common chemical compounds, which are salts. Caesium-137 was discovered by Glenn T. Seaborg and Margaret Melhase.

Induced radioactivity, also called artificial radioactivity or man-made radioactivity, is the process of using radiation to make a previously stable material radioactive. The husband-and-wife team of Irène Joliot-Curie and Frédéric Joliot-Curie discovered induced radioactivity in 1934, and they shared the 1935 Nobel Prize in Chemistry for this discovery.

Iodine-125 (125I) is a radioisotope of iodine which has uses in biological assays, nuclear medicine imaging and in radiation therapy as brachytherapy to treat a number of conditions, including prostate cancer, uveal melanomas, and brain tumors. It is the second longest-lived radioisotope of iodine, after iodine-129.

<span class="mw-page-title-main">Fission products (by element)</span> Breakdown of nuclear fission results

This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium. The isotopes are listed by element, in order by atomic number.

<span class="mw-page-title-main">Environmental radioactivity</span> Radioactivity naturally present within the Earth

Environmental radioactivity is produced by radioactive materials in the human environment. While some radioisotopes, such as strontium-90 (90Sr) and technetium-99 (99Tc), are only found on Earth as a result of human activity, and some, like potassium-40 (40K), are only present due to natural processes, a few isotopes, e.g. tritium (3H), result from both natural processes and human activities. The concentration and location of some natural isotopes, particularly uranium-238 (238U), can be affected by human activity.

Iridium-192 is a radioactive isotope of iridium, with a half-life of 73.827 days. It decays by emitting beta (β) particles and gamma (γ) radiation. About 96% of 192Ir decays occur via emission of β and γ radiation, leading to 192Pt. Some of the β particles are captured by other 192Ir nuclei, which are then converted to 192Os. Electron capture is responsible for the remaining 4% of 192Ir decays. Iridium-192 is normally produced by neutron activation of natural-abundance iridium metal. Iridium-192 is a very strong gamma ray emitter, with a gamma dose-constant of approximately 1.54 μSv·h−1·MBq−1 at 30 cm, and a specific activity of 341 TBq·g−1. There are seven principal energy packets produced during its disintegration process ranging from just over 0.2 to about 0.6 MeV. It is commonly used as a gamma ray source in industrial radiography to locate flaws in metal components. It is also used in radiotherapy as a radiation source, in particular in brachytherapy. Iridium-192 has accounted for the majority of cases tracked by the U.S Nuclear Regulatory Commission in which radioactive materials have gone missing in quantities large enough to make a dirty bomb.

Long-lived fission products (LLFPs) are radioactive materials with a long half-life produced by nuclear fission of uranium and plutonium. Because of their persistent radiotoxicity, it is necessary to isolate them from humans and the biosphere and to confine them in nuclear waste repositories for geological periods of time.

<span class="mw-page-title-main">Radioactive source</span>

A radioactive source is a known quantity of a radionuclide which emits ionizing radiation, typically one or more of the radiation types gamma rays, alpha particles, beta particles, and neutron radiation.

References

  1. "Cobalt-60".