Fission product yield

Last updated
Nuclide t12 Yield Q [a 1] βγ
(Ma)(%) [a 2] (keV)
99Tc 0.2116.1385294β
126Sn 0.2300.10844050 [a 3] βγ
79Se 0.3270.0447151β
135Cs 1.336.9110 [a 4] 269β
93Zr 1.535.457591βγ
107Pd 6.51.249933β
129I 15.70.8410194βγ
  1. Decay energy is split among β, neutrino, and γ if any.
  2. Per 65 thermal neutron fissions of 235U and 35 of 239Pu.
  3. Has decay energy 380 keV, but its decay product 126Sb has decay energy 3.67 MeV.
  4. Lower in thermal reactors because 135Xe, its predecessor, readily absorbs neutrons.
Medium-lived
fission products [ further explanation needed ]
t½
(year)
Yield
(%)
Q
(keV)
βγ
155Eu 4.760.0803252βγ
85Kr 10.760.2180687βγ
113mCd 14.10.0008316β
90Sr 28.94.5052826β
137Cs 30.236.3371176βγ
121mSn 43.90.00005390βγ
151Sm 88.80.531477β

Nuclear fission splits a heavy nucleus such as uranium or plutonium into two lighter nuclei, which are called fission products. Yield refers to the fraction of a fission product produced per fission.

Contents

Yield can be broken down by:

  1. Individual isotope
  2. Chemical element spanning several isotopes of different mass number but same atomic number.
  3. Nuclei of a given mass number regardless of atomic number. Known as "chain yield" because it represents a decay chain of beta decay.

Isotope and element yields will change as the fission products undergo beta decay, while chain yields do not change after completion of neutron emission by a few neutron-rich initial fission products (delayed neutrons), with half-life measured in seconds.

A few isotopes can be produced directly by fission, but not by beta decay because the would-be precursor with atomic number one greater is stable and does not decay. Chain yields do not account for these "shadowed" isotopes; however, they have very low yields (less than a millionth as much as common fission products) because they are far less neutron-rich than the original heavy nuclei.

Yield is usually stated as percentage per fission, so that the total yield percentages sum to 200%. Less often, it is stated as percentage of all fission products, so that the percentages sum to 100%. Ternary fission, about 0.2–0.4% of fissions, also produces a third light nucleus such as helium-4 (90%) or tritium (7%).

Mass vs. yield curve

Fission product yields by mass for thermal neutron fission of U-235, Pu-239, a combination of the two typical of current nuclear power reactors, and U-233 used in the thorium fuel cycle ThermalFissionYield.svg
Fission product yields by mass for thermal neutron fission of U-235, Pu-239, a combination of the two typical of current nuclear power reactors, and U-233 used in the thorium fuel cycle

If a graph of the mass or mole yield of fission products against the atomic number of the fragments is drawn then it has two peaks, one in the area zirconium through to palladium and one at xenon through to neodymium. This is because the fission event causes the nucleus to split in an asymmetric manner, [1] as nuclei closer to magic numbers are more stable. [2]

Yield vs. Z - This is a typical distribution for the fission of uranium. Note that in the calculations used to make this graph the activation of fission products was ignored and the fission was assumed to occur in a single moment rather than a length of time. In this bar chart results are shown for different cooling times (time after fission).

Yield vs Z. Colors indicate fluoride volatility, which is important in nuclear reprocessing: Blue elements have volatile fluorides or are already volatile; green elements do not but have volatile chlorides; red elements have neither, but the elements themselves are volatile at very high temperatures. Yields at 10 years after fission, not considering later neutron capture, fraction of 100% not 200%. Beta decay Kr-85-Rb, Sr-90-Zr, Ru-106-Pd, Sb-125-Te, Cs-137-Ba, Ce-144-Nd, Sm-151-Eu, Eu-155-Gd visible. Fission yield volatile 2.png
Yield vs Z. Colors indicate fluoride volatility, which is important in nuclear reprocessing: Blue elements have volatile fluorides or are already volatile; green elements do not but have volatile chlorides; red elements have neither, but the elements themselves are volatile at very high temperatures. Yields at 10 years after fission, not considering later neutron capture, fraction of 100% not 200%. Beta decay Kr-85Rb, Sr-90Zr, Ru-106Pd, Sb-125Te, Cs-137Ba, Ce-144Nd, Sm-151Eu, Eu-155Gd visible.

Because of the stability of nuclei with even numbers of protons and/or neutrons the curve of yield against element is not a smooth curve. It tends to alternate.

In general, the higher the energy of the state that undergoes nuclear fission, the more likely a symmetric fission is, hence as the neutron energy increases and/or the energy of the fissile atom increases, the valley between the two peaks becomes more shallow; for instance, the curve of yield against mass for Pu-239 has a more shallow valley than that observed for U-235, when the neutrons are thermal neutrons. The curves for the fission of the later actinides tend to make even more shallow valleys. In extreme cases such as 259Fm, only one peak is seen.

Yield is usually expressed relative to number of fissioning nuclei, not the number of fission product nuclei, that is, yields should sum to 200%.

The table in the next section ("Ordered by yield") gives yields for notable radioactive (with half-lives greater than one year, plus iodine-131) fission products, and (the few most absorptive) neutron poison fission products, from thermal neutron fission of U-235 (typical of nuclear power reactors), computed from [ permanent dead link ].

The yields in the table sum to only 45.5522%, including 34.8401% which have half-lives greater than one year:

t½ in yearsYield
1 to 52.7252%
10 to 10012.5340%
2 to 300,0006.1251%
1.5 to 16 million13.4494%

The remainder and the unlisted 54.4478% decay with half-lives less than one year into nonradioactive nuclei.

This is before accounting for the effects of any subsequent neutron capture; e.g.:

Besides fission products, the other types of radioactive products are

Fission products from U-235

YieldElementIsotopeHalflifeComment
6.7896% Caesium Neutron capture (29 barns) slowly converts stable 133Cs to 134Cs, which itself is low-yield because beta decay stops at 134Xe; can be further converted (140 barns) to 135Cs.
6.3333% Iodine, xenon Most important neutron poison; neutron capture converts 10–50% of 135Xe to 136Xe; remainder decays (9.14h) to 135Cs (2.3 My).
6.2956% Zirconium Long-lived fission product also produced by neutron activation in zircalloy cladding.
6.1% Molybdenum Its daughter nuclide 99mTc is important in medical diagnosing.
6.0899% Caesium Source of most of the decay heat from years to decades after irradiation, together with 90
Sr
.
6.0507% Technetium Candidate for disposal by nuclear transmutation.
5.7518% Strontium Source of much of the decay heat together with 137
Cs
on the timespan of years to decades after irradiation. Formerly used in radioisotope thermoelectric generators.
2.8336% Iodine Reason for the use of potassium iodide tablets after nuclear accidents or nuclear bomb explosions.
2.2713% Promethium beta decays to very long lived Samarium-147 (half life>age of the universe); has seen some use in radioisotope thermoelectric generators
1.0888% Samarium 2nd most significant neutron poison.
0.9% [3] Iodine Long-lived fission product. Candidate for disposal by nuclear transmutation.
0.4203% Samarium Neutron poison; most will be converted to stable 152Sm.
0.3912% Ruthenium ruthenium tetroxide is volatile and chemically aggressive; daughter nuclide 106
Rh
decays quickly to stable 106
Pd
0.2717% Krypton noble gas; has some uses in industry to detect fine cracks in materials via autoradiography
0.1629% Palladium Long-lived fission product; hampers extraction of stable isotopes of platinum group metals for use due to chemical similarity.
0.0508% Selenium
0.0330% Europium, gadolinium Both neutron poisons, most will be destroyed while fuel still in use.
0.0297% Antimony
0.0236% Tin
0.0065% Gadolinium Neutron poison.
0.0003% Cadmium Neutron poison, most will be destroyed while fuel still in use.
Yields at 10 years after fission, probably of Pu-239 not U-235 because left hump is shifted right, not considering later neutron capture, fraction of 100% not 200%. Beta decay Kr-85-Rb, Sr-90-Zr, Ru-106-Pd, Sb-125-Te, Cs-137-Ba, Ce-144-Nd, Sm-151-Eu, Eu-155-Gd visible. Fission yield.png
Yields at 10 years after fission, probably of Pu-239 not U-235 because left hump is shifted right, not considering later neutron capture, fraction of 100% not 200%. Beta decay Kr-85Rb, Sr-90Zr, Ru-106Pd, Sb-125Te, Cs-137Ba, Ce-144Nd, Sm-151Eu, Eu-155Gd visible.

Cumulative fission yields

Cumulative fission yields give the amounts of nuclides produced either directly in the fission or by decay of other nuclides.

Cumulative fission yields per fission for U-235 (%) [4]
ProductThermal fission yieldFast fission yield14-MeV fission yield
1
1
H
0.00171 ± 0.000180.00269 ± 0.000440.00264 ± 0.00045
2
1
H
0.00084 ± 0.000150.00082 ± 0.000120.00081 ± 0.00012
3
1
H
0.0108 ± 0.00040.0108 ± 0.00040.0174 ± 0.0036
3
2
He
0.0108 ± 0.00040.0108 ± 0.00040.0174 ± 0.0036
4
2
He
0.1702 ± 0.00490.17 ± 0.00490.1667 ± 0.0088
85
35
Br
1.304 ± 0.0121.309 ± 0.0431.64 ± 0.31
82
36
Kr
0.000285 ± 0.0000760.00044 ± 0.000160.038 ± 0.012
85
36
Kr
0.286 ± 0.0210.286 ± 0.0260.47 ± 0.1
85m
36
Kr
1.303 ± 0.0121.307 ± 0.0431.65 ± 0.31
90
38
Sr
5.73 ± 0.135.22 ± 0.184.41 ± 0.18
95
40
Zr
6.502 ± 0.0726.349 ± 0.0835.07 ± 0.19
94
41
Nb
0.00000042 ± 0.000000112.90±0.770 × 10−80.00004 ± 0.000015
95
41
Nb
6.498 ± 0.0726.345 ± 0.0835.07 ± 0.19
95m
41
Nb
0.0702 ± 0.00670.0686 ± 0.00710.0548 ± 0.0072
92
42
Mo
0 ± 00 ± 00 ± 0
94
42
Mo
8.70 × 10−10 ± 3.20 × 10−100 ± 06.20 × 10−8 ± 2.50 × 10−8
96
42
Mo
0.00042 ± 0.000150.000069 ± 0.0000250.0033 ± 0.0015
99
42
Mo
6.132 ± 0.0925.8 ± 0.135.02 ± 0.13
99
43
Tc
6.132 ± 0.0925.8 ± 0.135.02 ± 0.13
103
44
Ru
3.103 ± 0.0843.248 ± 0.0423.14 ± 0.11
106
44
Ru
0.41 ± 0.0110.469 ± 0.0362.15 ± 0.59
106
45
Rh
0.41 ± 0.0110.469 ± 0.0362.15 ± 0.59
121m
50
Sn
0.00106 ± 0.000110.0039 ± 0.000910.142 ± 0.023
122
51
Sb
0.000000366 ± 0.0000000980.0000004 ± 0.000000140.00193 ± 0.00068
124
51
Sb
0.000089 ± 0.0000210.000112 ± 0.0000340.027 ± 0.01
125
51
Sb
0.026 ± 0.00140.067 ± 0.0111.42 ± 0.42
132
52
Te
4.276 ± 0.0434.639 ± 0.0653.85 ± 0.16
129
53
I
0.706 ± 0.0321.03 ± 0.261.59 ± 0.18
131
53
I
2.878 ± 0.0323.365 ± 0.0544.11 ± 0.14
133
53
I
6.59 ± 0.116.61 ± 0.135.42 ± 0.4
135
53
I
6.39 ± 0.226.01 ± 0.184.8 ± 1.4
128
54
Xe
0 ± 00 ± 00.00108 ± 0.00048
130
54
Xe
0.000038 ± 0.00000980.000152 ± 0.0000550.038 ± 0.014
131m
54
Xe
0.0313 ± 0.0030.0365 ± 0.00310.047 ± 0.0049
133
54
Xe
6.6 ± 0.116.61 ± 0.135.57 ± 0.41
133m
54
Xe
0.189 ± 0.0150.19 ± 0.0150.281 ± 0.049
135
54
Xe
6.61 ± 0.226.32 ± 0.186.4 ± 1.8
135m
54
Xe
1.22 ± 0.121.23 ± 0.132.17 ± 0.66
134
55
Cs
0.0000121 ± 0.00000320.0000279 ± 0.00000730.0132 ± 0.0035
137
55
Cs
6.221 ± 0.0695.889 ± 0.0965.6 ± 1.3
140
56
Ba
6.314 ± 0.0955.959 ± 0.0484.474 ± 0.081
140
57
La
6.315 ± 0.0955.96 ± 0.0484.508 ± 0.081
141
58
Ce
5.86 ± 0.155.795 ± 0.0814.44 ± 0.2
144
58
Ce
5.474 ± 0.0555.094 ± 0.0763.154 ± 0.038
144
59
Pr
5.474 ± 0.0555.094 ± 0.0763.155 ± 0.038
142
60
Nd
6.30 × 10−9 ± 1.70 × 10−91.70 × 10−9 ± 4.80 × 10−100.0000137 ± 0.0000049
144
60
Nd
5.475 ± 0.0555.094 ± 0.0763.155 ± 0.038
147
60
Nd
2.232 ± 0.042.148 ± 0.0281.657 ± 0.045
147
61
Pm
2.232 ± 0.042.148 ± 0.0281.657 ± 0.045
148
61
Pm
5.00 × 10−8 ± 1.70 × 10−87.40 × 10−9 ± 2.50 × 10−90.0000013 ± 0.00000042
148m
61
Pm
0.000000104 ± 0.0000000391.78 × 10−8 ± 6.60 × 10−90.0000048 ± 0.0000018
149
61
Pm
1.053 ± 0.0211.064 ± 0.030.557 ± 0.09
151
61
Pm
0.4204 ± 0.00710.431 ± 0.0150.388 ± 0.061
148
62
Sm
0.000000149 ± 0.0000000412.43 × 10−8 ± 6.80 × 10−90.0000058 ± 0.0000018
150
62
Sm
0.000061 ± 0.0000220.0000201 ± 0.00000770.00045 ± 0.00018
151
62
Sm
0.4204 ± 0.00710.431 ± 0.0150.388 ± 0.061
153
62
Sm
0.1477 ± 0.00710.1512 ± 0.00970.23 ± 0.015
151
63
Eu
0.4204 ± 0.00710.431 ± 0.0150.388 ± 0.061
152
63
Eu
3.24 × 10−10 ± 8.50 × 10−110 ± 03.30 × 10−8 ± 1.10 × 10−8
154
63
Eu
0.000000195 ± 0.0000000644.00 × 10−8 ± 1.10 × 10−80.0000033 ± 0.0000011
155
63
Eu
0.0308 ± 0.00130.044 ± 0.010.088 ± 0.014
Cumulative fission yield per fission for Pu-239 (%) [4]
ProductThermal fission yieldFast fission yield14-MeV fission yield
1
1
H
0.00408 ± 0.000410.00346 ± 0.00057-
2
1
H
0.00135 ± 0.000190.00106 ± 0.00016-
3
1
H
0.0142 ± 0.00070.0142 ± 0.0007-
3
2
He
0.0142 ± 0.00070.0142 ± 0.0007-
4
2
He
0.2192 ± 0.0090.219 ± 0.009-
85
35
Br
0.574 ± 0.0260.617 ± 0.049-
82
36
Kr
0.00175 ± 0.00060.00055 ± 0.0002-
85
36
Kr
0.136 ± 0.0140.138 ± 0.017-
85m
36
Kr
0.576 ± 0.0260.617 ± 0.049-
90
38
Sr
2.013 ± 0.0542.031 ± 0.057-
95
40
Zr
4.949 ± 0.0994.682 ± 0.098-
94
41
Nb
0.0000168 ± 0.00000450.00000255 ± 0.00000069-
95
41
Nb
4.946 ± 0.0994.68 ± 0.098-
95m
41
Nb
0.0535 ± 0.00660.0506 ± 0.0062-
92
42
Mo
0 ± 00 ± 0-
94
42
Mo
3.60 × 10−8 ± 1.30 × 10−84.80 × 10−9 ± 1.70 × 10−9-
96
42
Mo
0.0051 ± 0.00180.0017 ± 0.00062-
99
42
Mo
6.185 ± 0.0565.82 ± 0.13-
99
43
Tc
6.184 ± 0.0565.82 ± 0.13-
103
44
Ru
6.948 ± 0.0836.59 ± 0.16-
106
44
Ru
4.188 ± 0.0924.13 ± 0.24-
106
45
Rh
4.188 ± 0.0924.13 ± 0.24-
121m
50
Sn
0.0052 ± 0.00110.0053 ± 0.0012-
122
51
Sb
0.000024 ± 0.00000630.0000153 ± 0.000005-
124
51
Sb
0.00228 ± 0.000490.00154 ± 0.00043-
125
51
Sb
0.117 ± 0.0150.138 ± 0.022-
132
52
Te
5.095 ± 0.0944.92 ± 0.32-
129
53
I
1.407 ± 0.0861.31 ± 0.13-
131
53
I
3.724 ± 0.0784.09 ± 0.12-
133
53
I
6.97 ± 0.136.99 ± 0.33-
135
53
I
6.33 ± 0.236.24 ± 0.22-
128
54
Xe
0.00000234 ± 0.000000850.0000025 ± 0.0000012-
130
54
Xe
0.00166 ± 0.000560.00231 ± 0.00085-
131m
54
Xe
0.0405 ± 0.0040.0444 ± 0.0044-
133
54
Xe
6.99 ± 0.137.03 ± 0.33-
133m
54
Xe
0.216 ± 0.0160.223 ± 0.021-
135
54
Xe
7.36 ± 0.247.5 ± 0.23-
135m
54
Xe
1.78 ± 0.211.97 ± 0.25-
134
55
Cs
0.00067 ± 0.000180.00115 ± 0.0003-
137
55
Cs
6.588 ± 0.086.35 ± 0.12-
140
56
Ba
5.322 ± 0.0595.303 ± 0.074-
140
57
La
5.333 ± 0.0595.324 ± 0.075-
141
58
Ce
5.205 ± 0.0735.01 ± 0.16-
144
58
Ce
3.755 ± 0.033.504 ± 0.053-
144
59
Pr
3.756 ± 0.033.505 ± 0.053-
142
60
Nd
0.00000145 ± 0.00000040.00000251 ± 0.00000072-
144
60
Nd
3.756 ± 0.033.505 ± 0.053-
147
60
Nd
2.044 ± 0.0391.929 ± 0.046-
147
61
Pm
2.044 ± 0.0391.929 ± 0.046-
148
61
Pm
0.0000056 ± 0.00000190.000012 ± 0.000004-
148m
61
Pm
0.0000118 ± 0.00000440.000029 ± 0.000011-
149
61
Pm
1.263 ± 0.0321.275 ± 0.056-
151
61
Pm
0.776 ± 0.0180.796 ± 0.037-
148
62
Sm
0.0000168 ± 0.00000460.000039 ± 0.000011-
150
62
Sm
0.00227 ± 0.000780.0051 ± 0.0019-
151
62
Sm
0.776 ± 0.0180.797 ± 0.037-
153
62
Sm
0.38 ± 0.030.4 ± 0.18-
151
63
Eu
0.776 ± 0.0180.797 ± 0.037-
152
63
Eu
0.000000195 ± 0.000000050.00000048 ± 0.00000014-
154
63
Eu
0.000049 ± 0.0000120.000127 ± 0.000043-
155
63
Eu
0.174 ± 0.030.171 ± 0.054-
JEFF-3.1

Joint Evaluated Fission and Fusion File, Incident-neutron data, http://www-nds.iaea.org/exfor/endf00.htm, 2 October 2006; see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21, OECD/NEA, Paris, France, 2006, ISBN   92-64-02314-3.

Yields at 10 years after fission, probably of Pu-239 not U-235 because left hump is shifted right, not considering later neutron capture, fraction of 100% not 200%. Beta decay Kr-85-Rb, Sr-90-Zr, Ru-106-Pd, Sb-125-Te, Cs-137-Ba, Ce-144-Nd, Sm-151-Eu, Eu-155-Gd visible. Fission yield.png
Yields at 10 years after fission, probably of Pu-239 not U-235 because left hump is shifted right, not considering later neutron capture, fraction of 100% not 200%. Beta decay Kr-85Rb, Sr-90Zr, Ru-106Pd, Sb-125Te, Cs-137Ba, Ce-144Nd, Sm-151Eu, Eu-155Gd visible.

Ordered by mass number

Decays, even if lengthy, are given down to the stable nuclide.

Decays with half lives longer than a century are marked with a single asterisk (*), while decays with a half life longer than a hundred million years are marked with two asterisks (**).

YieldIsotope
0.0508% selenium-79 * bromine-79
0.2717% krypton-85 rubidium-85
5.7518% strontium-90 yttrium-90 zirconium-90
6.2956% zirconium-93 * niobium-93
6.0507% technetium-99 * ruthenium-99
0.3912% ruthenium-106 rhodium-106 palladium-106
0.1629% palladium-107 * silver-107
0.0003% cadmium-113m cadmium-113 (essentially stable)** indium-113
0.0297% antimony-125 tellurium-125m tellurium-125
0.0236% tin-126 * antimony-126 tellurium-126
0.9% iodine-129 * xenon-129
2.8336% iodine-131 xenon-131
6.7896% caesium-133 caesium-134 barium-134
6.3333% iodine-135 xenon-135 caesium-135 * barium-135
6.3333% iodine-135 xenon-135 xenon-136 (essentially stable)** barium-136
6.0899% caesium-137 barium-137
2.2713% promethium-147 samarium-147 * neodymium-143
1.0888% samarium-149
0.4203% samarium-151
0.0330% europium-155 gadolinium-155
0.0065% gadolinium-157

Half lives, decay modes, and branching fractions

Half-lives and decay branching fractions for fission products [5]
NuclideHalf-lifeDecay modeBranching fractionSourceNotes
85
35
Br
2.9 ± 0.06 mβ1.0 [6] [lower-alpha 1]
85
36
Kr
10.752 ± 0.023 yβ1.0 [7]
85m
36
Kr
4.48 ± 0.008 hIT0.214 ± 0.005 [6]
β0.786 ± 0.005
90
38
Sr
28.8 ± 0.07 yβ1.0 [8]
95
40
Zr
64.032 ± 0.006 dβ1.0 [8]
94
41
Nb
(7.3 ± 0.9) × 106 dβ1.0 [9]
95m
41
Nb
3.61 ± 0.03 dβ0.025 ± 0.001 [8] [lower-alpha 2]
IT0.975 ± 0.001
95
41
Nb
34.985 ± 0.012 dβ1.0 [9]
99
43
Tc
(2.111 ± 0.012) × 105 yβ1.0 [6]
103
44
Ru
39.247 ± 0.013 dβ1.0 [9]
106
44
Ru
1.018 ± 0.005 yβ1.0 [9]
106
45
Rh
30.1 ± 0.3 sβ1.0 [9]
121m
50
Sn
55 ± 5 yβ0.224 ± 0.02 [6]
IT0.776 ± 0.02
122
51
Sb
2.7238 ± 0.0002 dEC0.0241 ± 0.0012 [6]
β0.9759 ± 0.0012
124
51
Sb
60.2 ± 0.03 dβ1.0 [6]
125
51
Sb
2.7584 ± 0.0006 yβ1.0 [9]
129
53
I
(5.89 ± 0.23) × 109 dβ1.0 [9]
131
53
I
8.0233 ± 0.0019 dβ1.0 [7]
133
53
I
20.87 ± 0.08 hβ1.0 [8] [lower-alpha 3]
135
53
I
6.57 ± 0.02 hβ1.0 [6]
131m
54
Xe
11.930 ± 0.016 dIT1.0 [7]
133
54
Xe
5.243 ± 0.001 dβ1.0 [6]
133m
54
Xe
2.19 ± 0.01 dIT1.0 [6]
135
54
Xe
9.14 ± 0.02 hβ1.0 [6]
135m
54
Xe
15.29 ± 0.05 mβ0.003 ± 0.003 [6] [lower-alpha 4]
IT0.997 ± 0.003
134
55
Cs
2.063 ± 0.003 yEC0.000003 ± 0.000001 [9] [lower-alpha 5]
β0.999997 ± 0.000001
137
55
Cs
30.05 ± 0.08 yβ1.0 [9]
140
56
Ba
12.753 ± 0.004 dβ1.0 [7]
140
57
La
1.67850 ± 0.00017 dβ1.0 [7]
141
58
Ce
32.508 ± 0.010 dβ1.0 [8]
144
58
Ce
285.1 ± 0.6 dβ1.0 [9]
144
59
Pr
17.28 ± 0.05 mβ1.0 [6]
147
60
Nd
10.98 ± 0.01 dβ1.0 [6]
147
61
Pm
2.6234 ± 0.0002 yβ1.0 [6]
148m
61
Pm
41.29 ± 0.11 dIT0.042 ± 0.007 [6]
β0.958 ± 0.007
148
61
Pm
5.368 ± 0.002 dβ1.0 [6]
149
61
Pm
2.2117 ± 0.0021 dβ1.0 [6]
151
61
Pm
1.1833 ± 0.0017 dβ1.0 [6]
151
62
Sm
90 ± 6 yβ1.0 [6]
153
62
Sm
1.938 ± 0.010 dβ1.0 [9]
152
63
Eu
(4.941 ± 0.007) × 103 dβ0.279 ± 0.003 [9] [lower-alpha 6]
EC0.721 ± 0.003
154
63
Eu
(3.1381 ± 0.0014) × 103 dEC0.00018 ± 0.00013 [9] [lower-alpha 6]
β0.99982 ± 0.00013
155
63
Eu
4.753 ± 0.016 yβ1.0 [9]
  1. β decay branches of 0.9982 ± 0.0002 to Kr-85m and 0.0018 ± 0.0002 to Kr-85.
  2. ENSDF branching fractions: 0.944 ± 0.007 for IT and 0.056 ± 0.007 for β.
  3. β decay branch of 0.0288 ± 0.0002 to Xe-133m.
  4. Branching fractions were averaged from ENSDF database.
  5. Branching fractions were adopted from ENSDF database.
  6. 1 2 Branching fractions were adopted from LNHB data.

Ordered by thermal neutron absorption cross section

BarnsYieldIsotopet½Comment
2,650,0006.3333%Most important neutron poison; neutron capture rapidly converts 135Xe to 136Xe; remainder decays (9.14 h) to 135Cs (2.3 My).
254,0000.0065% Neutron poison, but low yield.
40,1401.0888%2nd most important neutron poison.
20,6000.0003%Most will be destroyed by neutron capture.
15,2000.4203%Most will be destroyed by neutron capture.
3,950
60,900
0.0330%Both neutron poisons.
962.2713%Suitable for radioisotope thermoelectric generators with annual or semi-annual refueling.
802.8336%
29
140
6.7896%
2.065 y
Neutron capture converts a few percent of nonradioactive 133Cs to 134Cs, which has very low direct yield because beta decay stops at 134Xe; further capture will add to long-lived 135Cs.
206.0507%Candidate for disposal by nuclear transmutation.
180.6576%Candidate for disposal by nuclear transmutation.
2.76.2956%Transmutation impractical.
1.80.1629%
1.660.2717%
0.905.7518%
0.150.3912%
0.116.0899%
0.0297%
0.0236%
0.0508%

Related Research Articles

<span class="mw-page-title-main">Nuclear fission</span> Nuclear reaction splitting an atom into multiple parts

Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactive decay.

<span class="mw-page-title-main">Stable nuclide</span> Nuclide that does not undergo radioactive decay

Stable nuclides are nuclides that are not radioactive and so do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes.

<span class="mw-page-title-main">Nuclide</span> Atomic species

A nuclide is a class of atoms characterized by their number of protons, Z, their number of neutrons, N, and their nuclear energy state.

In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy in a system may be typified by either slow neutrons or fast neutrons. Fissile material can be used to fuel thermal-neutron reactors, fast-neutron reactors and nuclear explosives.

<span class="mw-page-title-main">Decay chain</span> Series of radioactive decays

In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". The typical radioisotope does not decay directly to a stable state, but rather it decays to another radioisotope. Thus there is usually a series of decays until the atom has become a stable isotope, meaning that the nucleus of the atom has reached a stable state.

<span class="mw-page-title-main">Neutron emission</span> Type of radioactive decay

Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a nucleus. It occurs in the most neutron-rich/proton-deficient nuclides, and also from excited states of other nuclides as in photoneutron emission and beta-delayed neutron emission. As only a neutron is lost by this process the number of protons remains unchanged, and an atom does not become an atom of a different element, but a different isotope of the same element.

<span class="mw-page-title-main">Nuclear fission product</span> Atoms or particles produced by nuclear fission

Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release of heat energy, and gamma rays. The two smaller nuclei are the fission products..

Uranium (92U) is a naturally occurring radioactive element that has no stable isotope. It has two primordial isotopes, uranium-238 and uranium-235, that have long half-lives and are found in appreciable quantity in the Earth's crust. The decay product uranium-234 is also found. Other isotopes such as uranium-233 have been produced in breeder reactors. In addition to isotopes found in nature or nuclear reactors, many isotopes with far shorter half-lives have been produced, ranging from 214U to 242U. The standard atomic weight of natural uranium is 238.02891(3).

Naturally occurring samarium (62Sm) is composed of five stable isotopes, 144Sm, 149Sm, 150Sm, 152Sm and 154Sm, and two extremely long-lived radioisotopes, 147Sm (half life: 1.06×1011 y) and 148Sm (6.3×1015 y), with 152Sm being the most abundant (26.75% natural abundance). 146Sm is also fairly long-lived, but is not long-lived enough to have survived in significant quantities from the formation of the Solar System on Earth, although it remains useful in radiometric dating in the Solar System as an extinct radionuclide. A 2012 paper revising the estimated half-life of 146Sm from 10.3(5)×107 y to 6.8(7)×107 y was retracted in 2023. It is the longest-lived nuclide that has not yet been confirmed to be primordial.

Caesium (55Cs) has 41 known isotopes, the atomic masses of these isotopes range from 112 to 152. Only one isotope, 133Cs, is stable. The longest-lived radioisotopes are 135Cs with a half-life of 1.33 million years, 137
Cs
with a half-life of 30.1671 years and 134Cs with a half-life of 2.0652 years. All other isotopes have half-lives less than 2 weeks, most under an hour.

Tin (50Sn) is the element with the greatest number of stable isotopes. This is probably related to the fact that 50 is a "magic number" of protons. In addition, twenty-nine unstable tin isotopes are known, including tin-100 (100Sn) and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.

Technetium (43Tc) is one of the two elements with Z < 83 that have no stable isotopes; the other such element is promethium. It is primarily artificial, with only trace quantities existing in nature produced by spontaneous fission or neutron capture by molybdenum. The first isotopes to be synthesized were 97Tc and 99Tc in 1936, the first artificial element to be produced. The most stable radioisotopes are 97Tc, 98Tc, and 99Tc.

Naturally occurring zirconium (40Zr) is composed of four stable isotopes (of which one may in the future be found radioactive), and one very long-lived radioisotope (96Zr), a primordial nuclide that decays via double beta decay with an observed half-life of 2.0×1019 years; it can also undergo single beta decay, which is not yet observed, but the theoretically predicted value of t1/2 is 2.4×1020 years. The second most stable radioisotope is 93Zr, which has a half-life of 1.53 million years. Thirty other radioisotopes have been observed. All have half-lives less than a day except for 95Zr (64.02 days), 88Zr (83.4 days), and 89Zr (78.41 hours). The primary decay mode is electron capture for isotopes lighter than 92Zr, and the primary mode for heavier isotopes is beta decay.

Plutonium (94Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long before being found in nature, the first isotope synthesized being plutonium-238 in 1940. Twenty plutonium radioisotopes have been characterized. The most stable are plutonium-244 with a half-life of 80.8 million years; plutonium-242 with a half-life of 373,300 years; and plutonium-239 with a half-life of 24,110 years; and plutonium-240 with a half-life of 6,560 years. This element also has eight meta states; all have half-lives of less than one second.

<span class="mw-page-title-main">Nuclear binding energy</span> Minimum energy required to separate particles within a nucleus

Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is always a positive number, as the nucleus must gain energy for the nucleons to move apart from each other. Nucleons are attracted to each other by the strong nuclear force. In theoretical nuclear physics, the nuclear binding energy is considered a negative number. In this context it represents the energy of the nucleus relative to the energy of the constituent nucleons when they are infinitely far apart. Both the experimental and theoretical views are equivalent, with slightly different emphasis on what the binding energy means.

<span class="mw-page-title-main">Fission products (by element)</span> Breakdown of nuclear fission results

This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium. The isotopes are listed by element, in order by atomic number.

<span class="mw-page-title-main">Valley of stability</span> Characterization of nuclide stability

In nuclear physics, the valley of stability is a characterization of the stability of nuclides to radioactivity based on their binding energy. Nuclides are composed of protons and neutrons. The shape of the valley refers to the profile of binding energy as a function of the numbers of neutrons and protons, with the lowest part of the valley corresponding to the region of most stable nuclei. The line of stable nuclides down the center of the valley of stability is known as the line of beta stability. The sides of the valley correspond to increasing instability to beta decay. The decay of a nuclide becomes more energetically favorable the further it is from the line of beta stability. The boundaries of the valley correspond to the nuclear drip lines, where nuclides become so unstable they emit single protons or single neutrons. Regions of instability within the valley at high atomic number also include radioactive decay by alpha radiation or spontaneous fission. The shape of the valley is roughly an elongated paraboloid corresponding to the nuclide binding energies as a function of neutron and atomic numbers.

An activation product is a material that has been made radioactive by the process of neutron activation.

Long-lived fission products (LLFPs) are radioactive materials with a long half-life produced by nuclear fission of uranium and plutonium. Because of their persistent radiotoxicity, it is necessary to isolate them from humans and the biosphere and to confine them in nuclear waste repositories for geological periods of time. The focus of this article is radioisotopes (radionuclides) generated by fission reactors.

<span class="mw-page-title-main">Isotope</span> Different atoms of the same element

Isotopes are distinct nuclear species of the same chemical element. They have the same atomic number and position in the periodic table, but differ in nucleon numbers due to different numbers of neutrons in their nuclei. While all isotopes of a given element have similar chemical properties, they have different atomic masses and physical properties.

References

  1. "fissionyield". Archived from the original on 2007-05-28. Retrieved 2007-06-10.
  2. Möller, P; Madland, DG; Sierk, AJ; Iwamoto, A (15 February 2001). "Nuclear fission modes and fragment mass asymmetries in a five-dimensional deformation space". Nature. 409 (6822): 785–790. Bibcode:2001Natur.409..785M. doi:10.1038/35057204. PMID   11236985. S2CID   9754793.
  3. Purkayastha, B. C., and G. R. Martin. "The yields of 129I in natural and in neutron-induced fission of uranium." Canadian Journal of Chemistry 34.3 (1956): 293-300.
  4. 1 2 "Cumulative Fission Yields". www-nds.iaea.org. IAEA. Retrieved 11 November 2016.
  5. "Half-lives and decay branching fractions for activation products". www-nds.iaea.org. IAEA. Retrieved 11 November 2016.
  6. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Evaluated Nuclear Structure Data File, http://www-nds.iaea.org/ensdf/, 26 January 2006.
  7. 1 2 3 4 5 M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N. Kuzmenko, R. Helmer, A. Nichols, E. Schönfeld, R. Dersch, Monographie BIPM-5, Table of Radionuclides, Vol. 2 - A = 151 to 242, 2004.
  8. 1 2 3 4 5 Laboratoire National Henri Becquerel, Recommended Data, http://www.nucleide.org/DDEP_WG/DDEPdata.htm Archived 2021-02-13 at the Wayback Machine , 16 January 2006.
  9. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlavác, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, IAEA CRP "Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN   92-0-113606-4.