Reprocessed uranium

Last updated

Reprocessed uranium (RepU) is the uranium recovered from nuclear reprocessing, as done commercially in France, the UK and Japan and by nuclear weapons states' military plutonium production programs. This uranium makes up the bulk of the material separated during reprocessing.

Commercial LWR spent nuclear fuel contains on average (excluding cladding) only four percent plutonium, minor actinides and fission products by weight. Despite it often containing more fissile material than natural uranium, reuse of reprocessed uranium has not been common because of low prices in the uranium market of recent decades, and because it contains undesirable isotopes of uranium.

Isotopic composition of reprocessed uranium [1]
IsotopeProportionCharacteristics
uranium-238 98.5% Fertile material
uranium-237 0%Around 0.001% at discharge, but half-life only 1 week. Produces soluble, long-lived neptunium-237 which is hard to contain in a geological repository. 237
Np
is the feedstock for the production of 238
Pu
which is used in radioisotope thermoelectric generators
uranium-236 0.4–0.6%Neither fissile nor fertile. Affects reactivity.
uranium-235 0.5–1.0% Fissile material
uranium-234 >0.02%Fertile material but can affect reactivity differently [2]
uranium-233 traceFissile material
uranium-232 traceFertile material, decay product thallium-208 emits strong gamma radiation making handling difficult

Given sufficiently high uranium prices, it is feasible for reprocessed uranium to be re-enriched and reused. It requires a higher enrichment level than natural uranium to compensate for its higher levels of 236U which is lighter than 238U and therefore concentrates in the enriched product. [3] As enrichment concentrates lighter isotopes on the "enriched" side and heavier isotopes on the "depleted" side, 234
U
will inevitably be enriched slightly stronger than 235
U
, which is a negligible effect in a once-through fuel cycle due to the low (55 ppm) share of 234
U
in natural uranium but can become relevant after successive passes through an enrichment-burnup-reprocessing-enrichment cycle, depending on enrichment and burnup characteristics. 234
U
readily absorbs thermal neutrons and converts to fissile 235
U
, which needs to be taken into account if it reaches significant proportions of the fuel material. If 235
U
interacts with a fast neutron there is a chance of a (n,2n) "knockout" reaction. Depending on the characteristics of the reactor and burnup, this can be a larger source of 234
U
in spent fuel than enrichment. If fast breeder reactors ever come into widespread commercial use, reprocessed uranium, like depleted uranium, will be usable in their breeding blankets.

There have been some studies involving the use of reprocessed uranium in CANDU reactors. CANDU is designed to use natural uranium as fuel; the 235U content remaining in spent PWR/BWR fuel is typically greater than that found in natural uranium, which is about 0.72% 235U, allowing the re-enrichment step to be skipped. Fuel cycle tests also have included the DUPIC (Direct Use of spent PWR fuel In CANDU) fuel cycle, where used fuel from a pressurized water reactor (PWR) is packaged into a CANDU fuel bundle with only physical reprocessing (cut into pieces) but no chemical reprocessing. [4] Opening the cladding inevitably releases volatile fission products like xenon, tritium or krypton-85. Some variations of the DUPIC fuel cycle make deliberate use of this by including a voloxidation step whereby the fuel is heated to drive off semi-volatile fission products or subjected to one or more reduction / oxidation cycles to transform nonvolatile oxides into volatile native elements and vice versa.

The direct use of recovered uranium to fuel a CANDU reactor was first demonstrated at Qinshan Nuclear Power Plant in China. [5] The first use of re-enriched uranium in a commercial LWR was in 1994 at the Cruas Nuclear Power Plant in France. [6] [7]

In 2020, France, one of the countries with the biggest reprocessing capacity, held a stock of 40,020 tonnes (39,390 long tons; 44,110 short tons) of reprocessed uranium, up from 24,100 tonnes (23,700 long tons; 26,600 short tons) in 2010. [8] Every year France processes 1,100 tonnes (1,100 long tons; 1,200 short tons) of spent fuel into 11 tonnes (11 long tons; 12 short tons) reactor grade plutonium (for immediate further processing into MOX fuel) and 1,045 tonnes (1,028 long tons; 1,152 short tons) of reprocessed uranium which is largely stockpiled. There are provisions in place for the storage of this reprocessed uranium for up to 250 years for potential future use. [9] Given France's domestic uranium enrichment capabilities, this stockpile constitutes a strategic reserve for the case of a major disruption of uranium supply as France does not have domestic uranium mining.

Related Research Articles

<span class="mw-page-title-main">CANDU reactor</span> Canadian heavy water nuclear reactor design

The CANDU is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide moderator and its use of uranium fuel. CANDU reactors were first developed in the late 1950s and 1960s by a partnership between Atomic Energy of Canada Limited (AECL), the Hydro-Electric Power Commission of Ontario, Canadian General Electric, and other companies.

<span class="mw-page-title-main">Nuclear reactor</span> Device for controlled nuclear reactions

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. When a fissile nucleus like uranium-235 or plutonium-239 absorbs a neutron, it splits into lighter nuclei, releasing energy, gamma radiation, and free neutrons, which can induce further fission in a self-sustaining chain reaction. The process is carefully controlled using control rods and neutron moderators to regulate the number of neutrons that continue the reaction, ensuring the reactor operates safely, although inherent control by means of delayed neutrons also plays an important role in reactor output control. The efficiency of nuclear fuel is much higher than fossil fuels; the 5% enriched uranium used in the newest reactors has an energy density 120,000 times higher than coal.

Enriched uranium is a type of uranium in which the percent composition of uranium-235 has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238, uranium-235, and uranium-234. 235U is the only nuclide existing in nature that is fissile with thermal neutrons.

<span class="mw-page-title-main">Pressurized water reactor</span> Type of nuclear reactor

A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants.

<span class="mw-page-title-main">Nuclear fuel cycle</span> Process of manufacturing and using nuclear fuel

The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.

Mixed oxide fuel, commonly referred to as MOX fuel, is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enriched uranium fuel used in the light-water reactors that predominate nuclear power generation.

<span class="mw-page-title-main">Fast-neutron reactor</span> Nuclear reactor where fast neutrons maintain a fission chain reaction

A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons, as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor. Around 20 land based fast reactors have been built, accumulating over 400 reactor years of operation globally. The largest was the Superphénix sodium cooled fast reactor in France that was designed to deliver 1,242 MWe. Fast reactors have been studied since the 1950s, as they provide certain advantages over the existing fleet of water-cooled and water-moderated reactors. These are:

<span class="mw-page-title-main">Integral fast reactor</span> Nuclear reactor design

The integral fast reactor (IFR), originally the advancedliquid-metal reactor (ALMR), is a design for a nuclear reactor using fast neutrons and no neutron moderator. IFRs can breed more fuel and are distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.

<span class="mw-page-title-main">Uranium-234</span> Isotope of uranium

Uranium-234 is an isotope of uranium. In natural uranium and in uranium ore, 234U occurs as an indirect decay product of uranium-238, but it makes up only 0.0055% of the raw uranium because its half-life of just 245,500 years is only about 1/18,000 as long as that of 238U. Thus the ratio of 234
U
to 238
U
in a natural sample is equivalent to the ratio of their half-lives. The primary path of production of 234U via nuclear decay is as follows: uranium-238 nuclei emit an alpha particle to become thorium-234. Next, with a short half-life, 234Th nuclei emit a beta particle to become protactinium-234 (234Pa), or more likely a nuclear isomer denoted 234mPa. Finally, 234Pa or 234mPa nuclei emit another beta particle to become 234U nuclei.

<span class="mw-page-title-main">Nuclear fuel</span> Material fuelling nuclear reactors

Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other nuclear devices to generate energy.

<span class="mw-page-title-main">Plutonium-239</span> Isotope of plutonium

Plutonium-239 is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in thermal spectrum nuclear reactors, along with uranium-235 and uranium-233. Plutonium-239 has a half-life of 24,110 years.

<span class="mw-page-title-main">Thorium fuel cycle</span> Nuclear fuel cycle

The thorium fuel cycle is a nuclear fuel cycle that uses an isotope of thorium, 232
Th
, as the fertile material. In the reactor, 232
Th
is transmuted into the fissile artificial uranium isotope 233
U
which is the nuclear fuel. Unlike natural uranium, natural thorium contains only trace amounts of fissile material, which are insufficient to initiate a nuclear chain reaction. Additional fissile material or another neutron source is necessary to initiate the fuel cycle. In a thorium-fuelled reactor, 232
Th
absorbs neutrons to produce 233
U
. This parallels the process in uranium breeder reactors whereby fertile 238
U
absorbs neutrons to form fissile 239
Pu
. Depending on the design of the reactor and fuel cycle, the generated 233
U
either fissions in situ or is chemically separated from the used nuclear fuel and formed into new nuclear fuel.

<span class="mw-page-title-main">Spent nuclear fuel</span> Nuclear fuel thats been irradiated in a nuclear reactor

Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor. It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and, depending on its point along the nuclear fuel cycle, it will have different isotopic constituents than when it started.

<span class="mw-page-title-main">Weapons-grade nuclear material</span> Nuclear material pure enough to be used for nuclear weapons

Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon and has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nuclear weapons are the most common examples.

Uranium-236 is an isotope of uranium that is neither fissile with thermal neutrons, nor very good fertile material, but is generally considered a nuisance and long-lived radioactive waste. It is found in spent nuclear fuel and in the reprocessed uranium made from spent nuclear fuel.

In nuclear power technology, burnup is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured as the fraction of fuel atoms that underwent fission in %FIMA or %FIFA as well as, preferably, the actual energy released per mass of initial fuel in gigawatt-days/metric ton of heavy metal (GWd/tHM), or similar units.

Reactor-grade plutonium (RGPu) is the isotopic grade of plutonium that is found in spent nuclear fuel after the uranium-235 primary fuel that a nuclear power reactor uses has burnt up. The uranium-238 from which most of the plutonium isotopes derive by neutron capture is found along with the U-235 in the low enriched uranium fuel of civilian reactors.

<span class="mw-page-title-main">Traveling wave reactor</span> Type of nuclear fission reactor

A traveling-wave reactor (TWR) is a proposed type of nuclear fission reactor that can convert fertile material into usable fuel through nuclear transmutation, in tandem with the burnup of fissile material. TWRs differ from other kinds of fast-neutron and breeder reactors in their ability to use fuel efficiently without uranium enrichment or reprocessing, instead directly using depleted uranium, natural uranium, thorium, spent fuel removed from light water reactors, or some combination of these materials. The concept is still in the development stage and no TWRs have ever been built.

A pressurized heavy-water reactor (PHWR) is a nuclear reactor that uses heavy water (deuterium oxide D2O) as its coolant and neutron moderator. PHWRs frequently use natural uranium as fuel, but sometimes also use very low enriched uranium. The heavy water coolant is kept under pressure to avoid boiling, allowing it to reach higher temperature (mostly) without forming steam bubbles, exactly as for a pressurized water reactor (PWR). While heavy water is very expensive to isolate from ordinary water (often referred to as light water in contrast to heavy water), its low absorption of neutrons greatly increases the neutron economy of the reactor, avoiding the need for enriched fuel. The high cost of the heavy water is offset by the lowered cost of using natural uranium and/or alternative fuel cycles. As of the beginning of 2001, 31 PHWRs were in operation, having a total capacity of 16.5 GW(e), representing roughly 7.76% by number and 4.7% by generating capacity of all current operating reactors. CANDU and IPHWR are the most common type of reactors in the PHWR family.

Depleted uranium hexafluoride (DUHF; also referred to as depleted uranium tails, depleted uranium tailings or DUF6) is a byproduct of the processing of uranium hexafluoride into enriched uranium. It is one of the chemical forms of depleted uranium (up to 73-75%), along with depleted triuranium octoxide (up to 25%) and depleted uranium metal (up to 2%). DUHF is 1.7 times less radioactive than uranium hexafluoride and natural uranium.

References

  1. "Processing of Used Nuclear Fuel". World Nuclear Association. 2013. Archived from the original on 12 February 2013. Retrieved 16 February 2014.
  2. "Uranium from reprocessing". Archived from the original on 19 October 2007.
  3. "Advanced Fuel Cycle Cost Basis" (PDF). Idaho National Laboratory. Archived from the original (PDF) on 24 January 2009.
  4. Whitlock, Jeremy J. (April 2000). "The Evolution of CANDU Fuel Cycles and Their Potential Contribution to World Peace". DUPIC. Retrieved 11 December 2024.
  5. "Use of CANDU fuel from spent light water reactor fuel at Qinshan nuclear power plant". wise-uranium.org.
  6. "Framatome to supply EDF with reprocessed uranium fuel". world-nuclear-news.org. 25 May 2018. Retrieved 11 December 2024.
  7. "Uranium Enrichment and Fuel Fabrication - Current Issues (France)". wise-uranium.org. 23 April 2014. Archived from the original on 23 April 2014.
  8. "Recovered & depleted uranium stocks in France 2010-2030". statista.com. Retrieved 11 December 2024.
  9. "Processing of Used Nuclear Fuel". World Nuclear Association. 23 August 2024. Retrieved 11 December 2024.

Further reading

Advanced Fuel Cycle Cost Basis - Idaho National Laboratory