Reprocessed uranium (RepU) is the uranium recovered from nuclear reprocessing, as done commercially in France, the UK and Japan and by nuclear weapons states' military plutonium production programs. This uranium makes up the bulk of the material separated during reprocessing.
Commercial LWR spent nuclear fuel contains on average (excluding cladding) only four percent plutonium, minor actinides and fission products by weight. Despite it often containing more fissile material than natural uranium, reuse of reprocessed uranium has not been common because of low prices in the uranium market of recent decades, and because it contains undesirable isotopes of uranium.
Isotope | Proportion | Characteristics |
---|---|---|
uranium-238 | 98.5% | Fertile material |
uranium-237 | 0% | Around 0.001% at discharge, but half-life only 1 week. Produces soluble, long-lived neptunium-237 which is hard to contain in a geological repository. 237 Np is the feedstock for the production of 238 Pu which is used in radioisotope thermoelectric generators |
uranium-236 | 0.4–0.6% | Neither fissile nor fertile. Affects reactivity. |
uranium-235 | 0.5–1.0% | Fissile material |
uranium-234 | >0.02% | Fertile material but can affect reactivity differently [2] |
uranium-233 | trace | Fissile material |
uranium-232 | trace | Fertile material, decay product thallium-208 emits strong gamma radiation making handling difficult |
Given sufficiently high uranium prices, it is feasible for reprocessed uranium to be re-enriched and reused. A higher enrichment level is required to compensate for the 236U which is lighter than 238U and therefore concentrates in the enriched product. [3] As enrichment concentrates lighter isotopes on the "enriched" side and heavier isotopes on the "depleted" side, 234
U will inevitably be enriched slightly stronger than 235
U, which is a negligible effect in a once through fuel cycle due to the low (55 ppm) share of 234
U in natural uranium but can become relevant after successive passes through an enrichment-burnup-reprocessing-enrichment cycle, depending on enrichment and burnup characteristics. 234
U readily absorbs thermal neutrons and converts to fissile 235
U which needs to be taken into account if it reaches significant proportions of the fuel material. If 235
U interacts with a fast neutron there is a chance of a (n,2n) "knockout" reaction. Depending on the characteristics of the reactor and burnup, this can be a larger source of 234
U in spent fuel than enrichment. Also, if fast breeder reactors ever come into commercial use, reprocessed uranium, like depleted uranium, will be usable in their breeding blankets.
There have been some studies involving the use of reprocessed uranium in CANDU reactors. CANDU is designed to use natural uranium as fuel; the 235U content remaining in spent PWR/BWR fuel is typically greater than that found in natural uranium, which is about 0.72% 235U, allowing the re-enrichment step to be skipped. Fuel cycle tests also have included the DUPIC (Direct Use of spent PWR fuel In CANDU) fuel cycle, where used fuel from a Pressurized Water Reactor (PWR) is packaged into a CANDU fuel bundle with only physical reprocessing (cut into pieces) but no chemical reprocessing. [4] Opening the cladding inevitably releases volatile fission products like xenon, tritium or krypton-85. Some variations of the DUPIC fuel cycle make deliberate use of this by including a voloxidation step whereby the fuel is heated to drive off semi-volatile fission products and/or subjected to one or more reduction / oxidation cycles to transform nonvolatile oxides into volatile native elements and vice versa.
The direct use of recovered uranium to fuel a CANDU reactor was first demonstrated at Qinshan Nuclear Power Plant in China. [5] The first use of re-enriched uranium in a commercial LWR was in 1994 at the Cruas Nuclear Power Plant in France. [6] [7]
In 2020 France, one of the countries with the biggest reprocessing capacity, held a stock of 40,020 tonnes (39,390 long tons; 44,110 short tons) of reprocessed uranium, up from 24,100 tonnes (23,700 long tons; 26,600 short tons) in 2010. [8] Every year France processes 1,100 tonnes (1,100 long tons; 1,200 short tons) of spent fuel into 11 tonnes (11 long tons; 12 short tons) reactor grade plutonium (for immediate further processing into MOX fuel) and 1,045 tonnes (1,028 long tons; 1,152 short tons) of reprocessed uranium which is largely stockpiled. There are provisions in place for the storage of this reprocessed uranium for up to 250 years for potential future use. [9] Given France's domestic uranium enrichment capabilities, this stockpile constitutes a strategic reserve for the case of a major disruption of uranium supply as France does not have domestic uranium mining.
The CANDU is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide moderator and its use of uranium fuel. CANDU reactors were first developed in the late 1950s and 1960s by a partnership between Atomic Energy of Canada Limited (AECL), the Hydro-Electric Power Commission of Ontario, Canadian General Electric, and other companies.
A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. As of early 2019, the IAEA reports there are 454 nuclear power reactors and 226 nuclear research reactors in operation around the world.
A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants. In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a steam generator, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated. The steam then drives turbines, which spin an electric generator. In contrast to a boiling water reactor (BWR), pressure in the primary coolant loop prevents the water from boiling within the reactor. All light-water reactors use ordinary water as both coolant and neutron moderator. Most use anywhere from two to four vertically mounted steam generators; VVER reactors use horizontal steam generators.
The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.
Nuclear reprocessing is the chemical separation of fission products and unused uranium from spent nuclear fuel. Originally, reprocessing was used solely to extract plutonium for producing nuclear weapons. With commercialization of nuclear power, the reprocessed plutonium was recycled back into MOX nuclear fuel for thermal reactors. The reprocessed uranium, also known as the spent fuel material, can in principle also be re-used as fuel, but that is only economical when uranium supply is low and prices are high. A breeder reactor is not restricted to using recycled plutonium and uranium. It can employ all the actinides, closing the nuclear fuel cycle and potentially multiplying the energy extracted from natural uranium by about 60 times.
Mixed oxide fuel, commonly referred to as MOX fuel, is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enriched uranium (LEU) fuel used in the light-water reactors that predominate nuclear power generation.
Uranium-238 is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it is fissionable by fast neutrons, and is fertile, meaning it can be transmuted to fissile plutonium-239. 238U cannot support a chain reaction because inelastic scattering reduces neutron energy below the range where fast fission of one or more next-generation nuclei is probable. Doppler broadening of 238U's neutron absorption resonances, increasing absorption as fuel temperature increases, is also an essential negative feedback mechanism for reactor control.
A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons, as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor. Around 20 land based fast reactors have been built, accumulating over 400 reactor years of operation globally. The largest of this was the Superphénix Sodium cooled fast reactor in France that was designed to deliver 1,242 MWe. Fast reactors have been intensely studied since the 1950s, as they provide certain decisive advantages over the existing fleet of water cooled and water moderated reactors. These are:
The integral fast reactor is a design for a nuclear reactor using fast neutrons and no neutron moderator. IFR would breed more fuel and is distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.
Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission.
Plutonium-239 is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in thermal spectrum nuclear reactors, along with uranium-235 and uranium-233. Plutonium-239 has a half-life of 24,110 years.
Uranium (92U) is a naturally occurring radioactive element that has no stable isotope. It has two primordial isotopes, uranium-238 and uranium-235, that have long half-lives and are found in appreciable quantity in the Earth's crust. The decay product uranium-234 is also found. Other isotopes such as uranium-233 have been produced in breeder reactors. In addition to isotopes found in nature or nuclear reactors, many isotopes with far shorter half-lives have been produced, ranging from 214U to 242U. The standard atomic weight of natural uranium is 238.02891(3).
Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon or has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nuclear weapons are the most common examples.
Uranium-236 (236U) is an isotope of uranium that is neither fissile with thermal neutrons, nor very good fertile material, but is generally considered a nuisance and long-lived radioactive waste. It is found in spent nuclear fuel and in the reprocessed uranium made from spent nuclear fuel.
In nuclear power technology, burnup is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured as the fraction of fuel atoms that underwent fission in %FIMA or %FIFA as well as, preferably, the actual energy released per mass of initial fuel in gigawatt-days/metric ton of heavy metal (GWd/tHM), or similar units.
Reactor-grade plutonium (RGPu) is the isotopic grade of plutonium that is found in spent nuclear fuel after the uranium-235 primary fuel that a nuclear power reactor uses has burnt up. The uranium-238 from which most of the plutonium isotopes derive by neutron capture is found along with the U-235 in the low enriched uranium fuel of civilian reactors.
Peak uranium is the point in time that the maximum global uranium production rate is reached. After that peak, according to Hubbert peak theory, the rate of production enters a terminal decline. While uranium is used in nuclear weapons, its primary use is for energy generation via nuclear fission of the uranium-235 isotope in a nuclear power reactor. Each kilogram of uranium-235 fissioned releases the energy equivalent of millions of times its mass in chemical reactants, as much energy as 2700 tons of coal, but uranium-235 accounts for only 0.7% of the mass of natural uranium. While Uranium-235 can be "bred" from 234
U, a natural decay product of 238
U present at 55 ppm in all natural uranium samples, Uranium-235 is ultimately a finite non-renewable resource. Due to the currently low price of uranium, the majority of commercial light water reactors operate on a "once through fuel cycle" which leaves virtually all the energy contained in the original 238
U - which makes up over 99% of natural uranium - unused. Nuclear reprocessing is a technology currently used at industrial scale in France, Russia and Japan, which can recover part of that energy by producing MOX fuel or Remix Fuel for use in conventional power generating light water reactors. However, at current uranium prices, this is widely deemed uneconomical if only the "input" side is considered.
A traveling-wave reactor (TWR) is a proposed type of nuclear fission reactor that can convert fertile material into usable fuel through nuclear transmutation, in tandem with the burnup of fissile material. TWRs differ from other kinds of fast-neutron and breeder reactors in their ability to use fuel efficiently without uranium enrichment or reprocessing, instead directly using depleted uranium, natural uranium, thorium, spent fuel removed from light water reactors, or some combination of these materials. The concept is still in the development stage and no TWRs have ever been built.
A pressurized heavy-water reactor (PHWR) is a nuclear reactor that uses heavy water (deuterium oxide D2O) as its coolant and neutron moderator. PHWRs frequently use natural uranium as fuel, but sometimes also use very low enriched uranium. The heavy water coolant is kept under pressure to avoid boiling, allowing it to reach higher temperature (mostly) without forming steam bubbles, exactly as for pressurized water reactor. While heavy water is very expensive to isolate from ordinary water (often referred to as light water in contrast to heavy water), its low absorption of neutrons greatly increases the neutron economy of the reactor, avoiding the need for enriched fuel. The high cost of the heavy water is offset by the lowered cost of using natural uranium and/or alternative fuel cycles. As of the beginning of 2001, 31 PHWRs were in operation, having a total capacity of 16.5 GW(e), representing roughly 7.76% by number and 4.7% by generating capacity of all current operating reactors.
Remix Fuel was developed in Russia to make use of Mixed Recycled Uranium and Plutonium from spent nuclear fuel to manufacture fresh fuel suitable for widespread use in Russian reactor designs.
Advanced Fuel Cycle Cost Basis - Idaho National Laboratory