Breeding blanket

Last updated

The tritium breeding blanket (also known as a fusion blanket, lithium blanket or simply blanket), is a key part of many proposed fusion reactor designs. It serves several purposes; primarily it is to produce (or "breed") further tritium fuel for the nuclear fusion reaction, which owing to the scarcity of tritium would not be available in sufficient quantities, through the reaction of neutrons with lithium in the blanket. [1] The blanket may also act as a cooling mechanism, absorbing the energy from the neutrons produced by the reaction between deuterium and tritium ("D-T"), and further serves as shielding, preventing the high-energy neutrons from escaping to the area outside the reactor and protecting the more radiation-susceptible portions, such as ohmic or superconducting magnets, from damage.

Of these three duties, it is only the breeding portion that cannot be replaced by other means. For instance, a large quantity of water makes an excellent cooling system and neutron shield, as in the case of a conventional nuclear reactor. However, tritium is not a naturally occurring resource, and thus is difficult to obtain in sufficient quantity to run a reactor through other means, so if commercial fusion using the D-T cycle is to be achieved, successful breeding of the tritium in commercial quantities is a requirement.

ITER runs a major effort in blanket design and will test a number of potential solutions. [2] Concepts for the breeder blanket include helium-cooled lithium lead (HCLL), helium-cooled pebble bed (HCPB), and water-cooled lithium lead (WCLL) methods. [3] Six different tritium breeding systems, known as Test Blanket Modules (TBM) wil be tested in ITER. [4]

Some breeding blanket designs are based on lithium containing ceramics, with a focus on lithium titanate and lithium orthosilicate. [5] These materials, mostly in a pebble form, are used to produce and extract tritium and helium; must withstand high mechanical and thermal loads; and should not become excessively radioactive upon completion of their useful service life.

To date no large-scale breeding system has been attempted, and it is an open question whether such a system is possible to create.

A fast breeder reactor uses a blanket of uranium or thorium.

Related Research Articles

<span class="mw-page-title-main">Helium-3</span> Helium isotope with two protons and one neutron

Helium-3 is a light, stable isotope of helium with two protons and one neutron. Helium-3 and protium are the only stable nuclides with more protons than neutrons. It was discovered in 1939.

<span class="mw-page-title-main">Nuclear reactor</span> Device for controlled nuclear reactions

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. When a fissile nucleus like uranium-235 or plutonium-239 absorbs a neutron, it splits into lighter nuclei, releasing energy, gamma radiation, and free neutrons, which can induce further fission in a self-sustaining chain reaction. The process is carefully controlled using control rods and neutron moderators to regulate the number of neutrons that continue the reaction, ensuring the reactor operates safely, although inherent control by means of delayed neutrons also plays an important role in reactor output control. The efficiency of nuclear fuel is much higher than fossil fuels; the 5% enriched uranium used in the newest reactors has an energy density 120,000 times higher than coal.

<span class="mw-page-title-main">Tritium</span> Isotope of hydrogen with two neutrons

Tritium or hydrogen-3 is a rare and radioactive isotope of hydrogen with a half-life of ~12.3 years. The tritium nucleus contains one proton and two neutrons, whereas the nucleus of the common isotope hydrogen-1 (protium) contains one proton and no neutrons, and that of non-radioactive hydrogen-2 (deuterium) contains one proton and one neutron. Tritium is the heaviest particle-bound isotope of hydrogen. It is one of the few nuclides with a distinct name. The use of the name hydrogen-3, though more systematic, is much less common.

<span class="mw-page-title-main">Fusion power</span> Electricity generation through nuclear fusion

Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2024, no device has reached net power, although net positive reactions have been achieved.

<span class="mw-page-title-main">Breeder reactor</span> Nuclear reactor generating more fissile material than it consumes

A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. These reactors can be fueled with more-commonly available isotopes of uranium and thorium, such as uranium-238 and thorium-232, as opposed to the rare uranium-235 which is used in conventional reactors. These materials are called fertile materials since they can be bred into fuel by these breeder reactors.

<span class="mw-page-title-main">ITER</span> International nuclear fusion research and engineering megaproject

ITER is an international nuclear fusion research and engineering megaproject aimed at creating energy through a fusion process similar to that of the Sun. It is being built next to the Cadarache facility in southern France. Upon completion of construction of the main reactor and first plasma, planned for 2033–2034, ITER will be the largest of more than 100 fusion reactors built since the 1950s, with six times the plasma volume of JT-60SA in Japan, the largest tokamak operating today.

Muon-catalyzed fusion is a process allowing nuclear fusion to take place at temperatures significantly lower than the temperatures required for thermonuclear fusion, even at room temperature or lower. It is one of the few known ways of catalyzing nuclear fusion reactions.

<span class="mw-page-title-main">Molten-salt reactor</span> Type of nuclear reactor cooled by molten material

A molten-salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a mixture of molten salt with a fissile material.

<span class="mw-page-title-main">Neutron activation</span> Induction of radioactivity by neutron radiation

Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emitting gamma rays, or particles such as beta particles, alpha particles, fission products, and neutrons. Thus, the process of neutron capture, even after any intermediate decay, often results in the formation of an unstable activation product. Such radioactive nuclei can exhibit half-lives ranging from small fractions of a second to many years.

<span class="mw-page-title-main">DEMOnstration Power Plant</span> Planned fusion facility

DEMO, or a demonstration power plant, refers to a proposed class of nuclear fusion experimental reactors that are intended to demonstrate the net production of electric power from nuclear fusion. Most of the ITER partners have plans for their own DEMO-class reactors. With the possible exception of the EU and Japan, there are no plans for international collaboration as there was with ITER.

<span class="mw-page-title-main">Gas-cooled fast reactor</span> Type of nuclear reactor cooled by a gas

The gas-cooled fast reactor (GFR) system is a nuclear reactor design which is currently in development. Classed as a Generation IV reactor, it features a fast-neutron spectrum and closed fuel cycle for efficient conversion of fertile uranium and management of actinides. The reference reactor design is a helium-cooled system operating with an outlet temperature of 850 °C (1,560 °F) using a direct Brayton closed-cycle gas turbine for high thermal efficiency. Several fuel forms are being considered for their potential to operate at very high temperatures and to ensure an excellent retention of fission products: composite ceramic fuel, advanced fuel particles, or ceramic clad elements of actinide compounds. Core configurations are being considered based on pin- or plate-based fuel assemblies or prismatic blocks, which allows for better coolant circulation than traditional fuel assemblies.

In applications such as nuclear reactors, a neutron poison is a substance with a large neutron absorption cross-section. In such applications, absorbing neutrons is normally an undesirable effect. However, neutron-absorbing materials, also called poisons, are intentionally inserted into some types of reactors in order to lower the high reactivity of their initial fresh fuel load. Some of these poisons deplete as they absorb neutrons during reactor operation, while others remain relatively constant.

<span class="mw-page-title-main">International Fusion Materials Irradiation Facility</span> Materials testing facility

The International Fusion Materials Irradiation Facility, also known as IFMIF, is a projected material testing facility in which candidate materials for the use in an energy producing fusion reactor can be fully qualified. IFMIF will be an accelerator-driven neutron source producing a high intensity fast neutron flux with a spectrum similar to that expected at the first wall of a fusion reactor using a deuterium-lithium nuclear reaction. The IFMIF project was started in 1994 as an international scientific research program, carried out by Japan, the European Union, the United States, and Russia, and managed by the International Energy Agency. Since 2007, it has been pursued by Japan and the European Union under the Broader Approach Agreement in the field of fusion energy research, through the IFMIF/EVEDA project, which conducts engineering validation and engineering design activities for IFMIF. The construction of IFMIF is recommended in the European Roadmap for Research Infrastructures Report, which was published by the European Strategy Forum on Research Infrastructures (ESFRI).

<span class="mw-page-title-main">Liquid fluoride thorium reactor</span> Type of nuclear reactor that uses molten material as fuel

The liquid fluoride thorium reactor is a type of molten salt reactor. LFTRs use the thorium fuel cycle with a fluoride-based molten (liquid) salt for fuel. In a typical design, the liquid is pumped between a critical core and an external heat exchanger where the heat is transferred to a nonradioactive secondary salt. The secondary salt then transfers its heat to a steam turbine or closed-cycle gas turbine.

<span class="mw-page-title-main">Lithium titanate</span> Chemical compound

Lithium titanates are chemical compounds of lithium, titanium and oxygen. They are mixed oxides and belong to the titanates. The most important lithium titanates are:

Hybrid nuclear fusion–fission is a proposed means of generating power by use of a combination of nuclear fusion and fission processes.

<span class="mw-page-title-main">Plasma-facing material</span>

In nuclear fusion power research, the plasma-facing material (PFM) is any material used to construct the plasma-facing components (PFC), those components exposed to the plasma within which nuclear fusion occurs, and particularly the material used for the lining the first wall or divertor region of the reactor vessel.

<span class="mw-page-title-main">Laser Inertial Fusion Energy</span> Early 2010s fusion energy effort

LIFE, short for Laser Inertial Fusion Energy, was a fusion energy effort run at Lawrence Livermore National Laboratory between 2008 and 2013. LIFE aimed to develop the technologies necessary to convert the laser-driven inertial confinement fusion concept being developed in the National Ignition Facility (NIF) into a practical commercial power plant, a concept known generally as inertial fusion energy (IFE). LIFE used the same basic concepts as NIF, but aimed to lower costs using mass-produced fuel elements, simplified maintenance, and diode lasers with higher electrical efficiency.

The ARC fusion reactor is a design for a compact fusion reactor developed by the Massachusetts Institute of Technology (MIT) Plasma Science and Fusion Center (PSFC). ARC aims to achieve an engineering breakeven of three. The key technical innovation is to use high-temperature superconducting magnets in place of ITER's low-temperature superconducting magnets. The proposed device would be about half the diameter of the ITER reactor and cheaper to build.

<span class="mw-page-title-main">Deuterium–tritium fusion</span> Type of fusion

Deuterium–tritium fusion (DTF) is a type of nuclear fusion in which one deuterium (2H) nucleus (deuteron) fuses with one tritium (3H) nucleus (triton), giving one helium-4 nucleus, one free neutron, and 17.6 MeV of total energy coming from both the neutron and helium. It is the best known fusion reaction for fusion power and thermonuclear weapons.

References

  1. "Thermal Discrete Element Analysis of EU Solid Breeder Blanket Subjected to Neutron Irradiation" (PDF). HAL archives ouvertes. Fusion Science and Technology. Retrieved 24 March 2024.
  2. "What is ITER?". ITER. Retrieved 2021-09-14.
  3. Federici, G.; Boccaccini, L.; Cismondi, F.; Gasparotto, M.; Poitevin, Y.; Ricapito, I. (2019-04-01). "An Overview of the EU breeding blanket design strategy as an integral part of the DEMO design effort". Fusion Engineering and Design . 141. Amsterdam, Netherlands: Elsevier: 30–42. Bibcode:2019FusED.141...30F. doi: 10.1016/j.fusengdes.2019.01.141 .
  4. Giancarli, Luciano (2016-11-07). "Committee Reviews Progress on Test Blanket Modules". ITER Newsline. St. Paul-lez-Durance, France: ITER. Retrieved 2021-03-20.
  5. Lithium breeder ceramics Journal of the European Ceramic Society