Shippingport Atomic Power Station

Last updated
Shippingport Atomic Power Station
Shippingport Reactor.jpg
The Shippingport reactor was the first full-scale PWR nuclear power plant in the United States.
Shippingport Atomic Power Station
CountryUnited States
Location Shippingport, Pennsylvania
Coordinates 40°37′16″N80°26′07″W / 40.62111°N 80.43528°W / 40.62111; -80.43528
StatusDecommissioned
Construction beganSeptember 6, 1954 (1954-09-06)
Commission date May 26, 1958
Decommission dateDecember 1989 [1]
Construction cost$72.5 million
Operator(s) Duquesne Light Company
Nuclear power station
Reactor type PWR
Reactor supplier Naval Reactors, Westinghouse Electric Corporation
Power generation
Units decommissioned1 × 60 MWe (68 MLWth)
External links
Commons Related media on Commons

The Shippingport Atomic Power Station was (according to the US Nuclear Regulatory Commission) the world's first full-scale atomic electric power plant devoted exclusively to peacetime uses. [notes 1] [notes 2] [2] It was located near the present-day Beaver Valley Nuclear Generating Station on the Ohio River in Beaver County, Pennsylvania, United States, about 25 miles (40 km) from Pittsburgh.

Contents

The reactor reached criticality on December 2, 1957, and aside from stoppages for three core changes, it remained in operation until October 1982. The first electrical power was produced on December 18, 1957 as engineers synchronized the plant with the distribution grid of Duquesne Light Company. [3]

The first core used at Shippingport originated from a cancelled nuclear-powered aircraft carrier [4] and used highly enriched uranium (93% U-235 [5] [6] ) as "seed" fuel surrounded by a "blanket" of natural U-238, in a so-called seed-and-blanket design; in the first reactor about half the power came from the seed. [6] The first Shippingport core reactor turned out to be capable of an output of 60 MWe one month after its launch. [7] The second core was similarly designed but more powerful, having a larger seed. [6] The highly energetic seed required more refueling cycles than the blanket in these first two cores. [6]

The third and final core used at Shippingport was an experimental, light water moderated, thermal breeder reactor. It kept the same seed-and-blanket design, but the seed was now uranium-233 and the blanket was made of thorium. [8] Being a breeder reactor, it had the ability to transmute relatively inexpensive thorium to uranium-233 as part of its fuel cycle. [9] The breeding ratio attained by Shippingport's third core was 1.01. [8] Over its 25-year life, the Shippingport power plant operated for about 80,324 hours, producing about 7.4 billion kilowatt-hours of electricity. [1]

Owing to these peculiarities, some non-governmental sources label Shippingport a "demonstration PWR reactor" and consider that the "first fully commercial PWR" in the US was Yankee Rowe. [10] Criticism centers on the fact that the Shippingport plant had not been built to commercial specifications. Consequently, the construction cost per kilowatt at Shippingport was about ten times those for a conventional power plant. [7] [11]

Construction

Reactor pressure vessel during construction (1956) Shippingport LOC 135430pu.jpg
Reactor pressure vessel during construction (1956)

In 1953, US President Dwight D. Eisenhower gave his Atoms for Peace speech to the United Nations. Commercial nuclear power generation was cornerstone of his plan. A proposal by Duquesne Light Company was accepted by Admiral Rickover and the plans for the Shippingport Atomic Power Station started.[ citation needed ]

Ground was broken on Labor Day, September 6, 1954. President Eisenhower remotely initiated the first scoop of dirt at the ceremony. [3] The reactor achieved first criticality at 4:30 AM on December 2, 1957. [3] Sixteen days later, on December 18, the first electrical power was generated and full power was achieved on December 23, 1957, [3] although the station remained in test mode. Eisenhower opened the Shippingport Atomic Power Station on May 26, 1958. The plant was built in 32 months at a cost of $72.5 million (equivalent to $755,408,768in 2022). [2]

The type of reactor used at Shippingport was a matter of expediency. The Atomic Energy Commission urged the construction of a reactor integrated into the utility grid. The only suitable reactor available at the time was the one that was intended for the nuclear-powered aircraft carrier desired by the Navy, but which Eisenhower had just vetoed. [4]

Kenneth Nichols of the AEC said it "became obvious" that the Rickover-Westinghouse pressurised-water reactor intended for an aircraft carrier was "the best choice for a reactor to demonstrate the production of electricity" with Rickover "having a going organization and a reactor project under way that now had no specific use to justify it". This was accepted by Lewis Strauss and the Commission in January 1954. The acceptance of Duquesne Light as the utility partner was announced on 11 March. The ground-breaking ceremony was initiated by Eisenhower from Denver where he was giving a talk on atomic energy on Labor Day; Rickover ensured that the unmanned bulldozer pushing dirt did not dig in and stall by having the dozer blade riding along two railroad rails buried under six inches of dirt. [12]

The origin of the project explains why the Shippingport reactor used 93%-enriched uranium, unlike later commercial power reactors that do not exceed 5% enrichment. [5] Other significant differences from commercial reactors include the use of hafnium for its control rods, [13] although these were necessary and used only in the reactor's seed. [6] Shippingport was created and operated under the auspices of Admiral Hyman G. Rickover, whose authority included a substantial role within the United States Atomic Energy Commission (AEC).[ citation needed ]

Cores

The Shippingport reactor was designed to accommodate different cores during its lifetime; three were used.[ citation needed ]

The first, installed in 1957, held 14.2 tons of natural uranium (the "blanket") and 165 pounds (75 kg) of high-enriched (93% U-235) uranium (the "seed"); despite this disparity in mass, about half the power was generated in the seed. [6] The seed was depleted quicker than the blanket, and it was replenished three times during the lifetime of the first core. [6] Seven years later (when running on its fourth seed) the first core was retired, after having produced 1.8 billion kilowatt-hours of electricity. [6]

The second core had increased generating capacity (more than five times) and instrumentation to measure performance, but otherwise used the same seed-and-blanket design. [6] For the second core, the seed volume was 21% of the total core volume. [6] The second core thus required only one seed refueling. [6] It began operating in 1965 and over the next nine years generated almost 3.5 billion kilowatt-hours of electricity.[ citation needed ] In 1974 the turbine-generator suffered mechanical failure, causing the plant to be shut down.[ citation needed ]

The third and final core was a light water breeder, which began operating in August 1977 and after testing was brought to full power by the end of that year. [3] It used pellets made of thorium dioxide and uranium-233 oxide; initially the U233 content of the pellets was 5-6% in the seed region, 1.5-3% in the blanket region and none in the reflector region. It operated at 236 MWt, generating 60 MWe and ultimately produced over 2.1 billion kilowatt-hours of electricity. After five years (29,000 effective full power hours) [14] the core was removed and found to contain nearly 1.4% more fissile material than when it was installed, demonstrating that breeding had occurred. [9] [15]

Decommissioning

On October 1, 1982, the reactor ceased operations after 25 years. [16] Dismantlement of the facility began in September 1985. [17] In December 1988, the 956-ton (870-T) reactor pressure vessel/neutron shield tank assembly was lifted out of the containment building and loaded onto land transportation equipment in preparation for removal from the site and shipment to a burial facility in Washington State. [18] The site has been cleaned up and released for unrestricted use. While the Shippingport Reactor has been decommissioned, Beaver Valley Nuclear Generating Station Units 1 and 2 are still licensed and in operation at the site.[ citation needed ]

The $98 million (1985 estimate) cleanup of Shippingport has been used as an example of a successful reactor decommissioning by proponents of nuclear power[ who? ]; however, critics[ who? ] point out that Shippingport was smaller than most commercial nuclear power plants, [17] most reactors in the United States are about 1,000 MWe, while Shippingport was only 60 MWe. Others[ who? ] argue that it was an excellent test case to prove a reactor site could be safely decommissioned and a site released for unrestricted use. Shippingport, while somewhat smaller than a large commercial reactor today, was representative, with four steam generators, pressurizer and reactor. The reactor alone, when packaged for shipment, weighed in excess of 1000 tons (921 tons weight of the vessel plus the weight of a structural steel shipping skid) and was successfully shipped by waterway for burial at the Hanford Reservation. [19] The reactor vessel from Trojan Nuclear Power Plant (located in Oregon), was also successfully shipped by waterway to the Hanford site; a much shorter trip than the Shippingport reactor.[ citation needed ]

Subsequent to Shippingport's decommissioning, three other large commercial reactors have been entirely leveled: Yankee Rowe Nuclear Power Station having been entirely decommissioned in 2007 with the U.S. Nuclear Regulatory Commission (NRC) notifying Yankee in August that the former plant site had been fully decommissioned in accordance with NRC procedures and regulations; [20] Maine Yankee Nuclear Power Plant completely decommissioned in 2005; [21] and Connecticut Yankee Nuclear Power Plant. [22] All three prior commercial reactor sites have been returned to greenfield conditions and are open to visitors.[ citation needed ]

See also

Notes

  1. Though Obninsk Nuclear Power Plant was connected to the Moscow Grid in 1954 and was the first nuclear reactor that produced commercial electricity, it can still be considered a small scale station designed principally to carry out nuclear experiments. The first British Magnox reactor at Calder Hall was connected to the grid on 27 August 1956, its primary purpose was to produce plutonium for military uses.
  2. The Vallecitos Nuclear Center started producing electric power in October 1957, but it served as a test or pilot plant.

Related Research Articles

<span class="mw-page-title-main">CANDU reactor</span> Canadian heavy water nuclear reactor design

The CANDU is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide moderator and its use of uranium fuel. CANDU reactors were first developed in the late 1950s and 1960s by a partnership between Atomic Energy of Canada Limited (AECL), the Hydro-Electric Power Commission of Ontario, Canadian General Electric, and other companies.

<span class="mw-page-title-main">Nuclear reactor</span> Device used to initiate and control a nuclear chain reaction

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. As of 2022, the International Atomic Energy Agency reports there are 422 nuclear power reactors and 223 nuclear research reactors in operation around the world.

<span class="mw-page-title-main">United States naval reactors</span> Classes of nuclear reactors used by the United States Navy

United States naval reactors are nuclear reactors used by the United States Navy aboard certain ships to generate the steam used to produce power for propulsion, electric power, catapulting airplanes in aircraft carriers, and a few more minor uses. Such naval nuclear reactors have a complete power plant associated with them. All U.S. Navy submarines and supercarriers built since 1975 are nuclear-powered by such reactors. There are no commissioned conventional (non-nuclear) submarines or aircraft carriers left in the U.S. Navy, since the last conventional carrier, USS Kitty Hawk, was decommissioned in May 2009. The U.S. Navy had nine nuclear-powered cruisers with such reactors also, but they have since been decommissioned. Reactors are designed by a variety of contractors, then developed and tested at one of several government owned and prime contractor-operated facilities: Bettis Atomic Power Laboratory in West Mifflin, Pennsylvania and its associated Naval Reactors Facility in Idaho, and Knolls Atomic Power Laboratory in Niskayuna, New York and its associated Kesselring site in West Milton, New York, all under the management of the office of Naval Reactors. Sometimes there were full-scale nuclear-powered prototype plants built at the Naval Reactors Facility, Kesselring, and Windsor to test the nuclear plants, which were operated for years to train nuclear-qualified sailors.

<span class="mw-page-title-main">Pressurized water reactor</span> Type of nuclear reactor

A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants. In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a steam generator, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated. The steam then drives turbines, which spin an electric generator. In contrast to a boiling water reactor (BWR), pressure in the primary coolant loop prevents the water from boiling within the reactor. All light-water reactors use ordinary water as both coolant and neutron moderator. Most use anywhere from two to four vertically mounted steam generators; VVER reactors use horizontal steam generators.

<span class="mw-page-title-main">Nuclear power plant</span> Thermal power station where the heat source is a nuclear reactor

A nuclear power plant (NPP) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces electricity. As of September 2023, the International Atomic Energy Agency reported there were 410 nuclear power reactors in operation in 31 countries around the world, and 57 nuclear power reactors under construction.

<span class="mw-page-title-main">Breeder reactor</span> Nuclear reactor generating more fissile material than it consumes

A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. These reactors can be fueled with more-commonly available isotopes of uranium and thorium, such as uranium-238 and thorium-232, as opposed to the rare uranium-235 which is used in conventional reactors. These materials are called fertile materials since they can be bred into fuel by these breeder reactors.

<span class="mw-page-title-main">Magnox</span> Type of nuclear reactor

Magnox is a type of nuclear power / production reactor that was designed to run on natural uranium with graphite as the moderator and carbon dioxide gas as the heat exchange coolant. It belongs to the wider class of gas-cooled reactors. The name comes from the magnesium-aluminium alloy, used to clad the fuel rods inside the reactor. Like most other "Generation I nuclear reactors", the Magnox was designed with the dual purpose of producing electrical power and plutonium-239 for the nascent nuclear weapons programme in Britain. The name refers specifically to the United Kingdom design but is sometimes used generically to refer to any similar reactor.

<span class="mw-page-title-main">Phénix</span>

Phénix was a small-scale prototype fast breeder reactor, located at the Marcoule nuclear site, near Orange, France. It was a pool-type liquid-metal fast breeder reactor cooled with liquid sodium. It generated 590 MW of thermal power, and had a breeding ratio of 1.16, but normally had to be stopped for refueling operations every two months. Phénix continued operating after the closure of the subsequent full-scale prototype Superphénix in 1997. After 2004, its main use was investigation of transmutation of nuclear waste while also generating some electricity. Phénix was shut down in 2009.

<span class="mw-page-title-main">Experimental Breeder Reactor I</span> Historic decommissioned nuclear reactor in southeast Idaho, United States

Experimental Breeder Reactor I (EBR-I) is a decommissioned research reactor and U.S. National Historic Landmark located in the desert about 18 miles (29 km) southeast of Arco, Idaho. It was the world's first breeder reactor. At 1:50 p.m. on December 20, 1951, it became one of the world's first electricity-generating nuclear power plants when it produced sufficient electricity to illuminate four 200-watt light bulbs. EBR-I subsequently generated sufficient electricity to power its building, and continued to be used for experimental purposes until it was decommissioned in 1964. The museum is open for visitors from late May until early September.

<span class="mw-page-title-main">Dounreay</span> Location of two former nuclear research establishments in northern Scotland

Dounreay is a small settlement and the site of two large nuclear establishments on the north coast of Caithness in the Highland area of Scotland. It is on the A836 road nine miles west of Thurso.

<span class="mw-page-title-main">Fast-neutron reactor</span> Nuclear reactor where fast neutrons maintain a fission chain reaction

A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons, as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor. Around 20 land based fast reactors have been built, accumulating over 400 reactor years of operation globally. The largest of this was the Superphénix Sodium cooled fast reactor in France that was designed to deliver 1,242 MWe. Fast reactors have been intensely studied since the 1950s, as they provide certain advantages over the existing fleet of water cooled and water moderated reactors. These are:

<span class="mw-page-title-main">Enrico Fermi Nuclear Generating Station</span> Nuclear power plant in Frenchtown Charter Township, Michigan

The Enrico Fermi Nuclear Generating Station is a nuclear power plant on the shore of Lake Erie near Monroe, in Frenchtown Charter Township, Michigan on approximately 1,000 acres (400 ha). All units of the plant are operated by the DTE Energy Electric Company and owned by parent company DTE Energy. It is approximately halfway between Detroit, Michigan, and Toledo, Ohio. It is also visible from parts of Amherstburg and Colchester, Ontario as well as on the shore of Lake Erie in Ottawa County, Ohio. Two units have been constructed on this site. The first unit's construction started on August 4, 1956 and reached initial criticality on August 23, 1963, and the second unit received its construction permit on September 26, 1972. It reached criticality on June 21, 1985 and was declared commercial on November 18, 1988. The plant is connected to two single-circuit 345 kV Transmission Lines and three 120 kV lines. They are operated and maintained by ITC Transmission.

<span class="mw-page-title-main">Bhabha Atomic Research Centre</span> Nuclear research facility in Mumbai, India

The Bhabha Atomic Research Centre (BARC) is India's premier nuclear research facility, headquartered in Trombay, Mumbai, Maharashtra, India. It was founded by Homi Jehangir Bhabha as the Atomic Energy Establishment, Trombay (AEET) in January 1954 as a multidisciplinary research program essential for India's nuclear program. It operates under the Department of Atomic Energy (DAE), which is directly overseen by the Prime Minister of India.

The Steam Generating Heavy Water Reactor (SGHWR) was a United Kingdom design for commercial nuclear reactors. It uses heavy water as the neutron moderator and normal "light" water as the coolant. The coolant boils in the reactor, like a boiling water reactor, and drives the power-extraction steam turbines.

Nuclear Power Demonstration was the first Canadian nuclear power reactor, and the prototype for the CANDU reactor design. Built by Canadian General Electric, in partnership with Atomic Energy of Canada Limited (AECL) and the Hydro Electric Power Commission of Ontario it consisted of a single 22 MWe pressurized heavy water reactor (PHWR) unit located in Rolphton, Ontario, not far from AECL's Chalk River Laboratories. NPD was owned by AECL and operated by Ontario Hydro.

<span class="mw-page-title-main">Douglas Point Nuclear Generating Station</span>

The Douglas Point Nuclear Generating Station was Canada’s first full-scale nuclear power plant and the second CANDU pressurised heavy water reactor. Its success was a major milestone and marked Canada's entry into the global nuclear power scene. The same site was later used for the Bruce Nuclear Generating Station.

<span class="mw-page-title-main">Beloyarsk Nuclear Power Station</span>

The Beloyarsk Nuclear Power Station was the third of the Soviet Union's nuclear plants. It is situated by Zarechny in Sverdlovsk Oblast, Russia. Zarechny township was created to service the station, which is named after the Beloyarsky District. The closest city is Yekaterinburg.

<span class="mw-page-title-main">Yankee Rowe Nuclear Power Station</span> Decommissioned nuclear power plant in Massachusetts

Yankee Rowe Nuclear Power Station was a nuclear power plant in Rowe, Massachusetts, located on the Deerfield River in the town of Rowe in western Massachusetts. Its 180 MWe pressurized water reactor operated from 1961 to 1991. It produced electricity for New England consumers. The site is referred to as "Yankee-Rowe" or simply "Rowe", to avoid confusion with Vermont Yankee, another nuclear power station located in nearby Vernon, Vermont. The decommissioning of the site was completed in 2007.

The Fast Breeder Reactor-600 (FBR-600) or Indian Fast Breeder Reactor (IFBR) or Commercial Fast Breeder Reactor (CFBR) is a 600-MWe fast breeder nuclear reactor design presently being designed as part of India's three-stage nuclear power programme to commercialise the Prototype Fast Breeder Reactor built at Kalpakkam. The Indira Gandhi Centre for Atomic Research (IGCAR) is responsible for the design of this reactor as a successor for Prototype Fast Breeder Reactor (PFBR). The 1st twin unit would come up within the BHAVINI premises at Madras Atomic Power Station at Kalpakkam, close to the PFBR site itself.

<span class="mw-page-title-main">Nuclear power in Pennsylvania</span>

Nuclear power has been widely established in Pennsylvania since the 1950s and has grown to provide almost 25% of the energy produced in PA. This is achieved through the four active reactors currently operating. There are five inactive reactors in PA, including Three Mile Island, which had a partial meltdown and caused a reevaluation of nuclear reactor safety practices.

References

  1. 1 2 United States General Accounting Office (Sep 4, 1990). "Shippingport Decommissioning - How Applicable Are the Lessons Learned?" (PDF). Retrieved 9 May 2012.{{cite journal}}: Cite journal requires |journal= (help)
  2. 1 2 "History". Nuclear Regulatory Commission (NRC). April 17, 2007. Retrieved 2016-07-08.
  3. 1 2 3 4 5 "Historic Achievement Recognized: Shippingport Atomic Power Station, A National Engineering Historical Landmark" (PDF). p. 4. Archived from the original (PDF) on 2015-07-17. Retrieved 2006-06-24.
  4. 1 2 Weinberg, Alvin Martin (1992). Nuclear Reactions: Science and Trans-Science. American Institute of Physics. p. 324. ISBN   978-0-88318-861-3.
  5. 1 2 Wood, J. (2007). Nuclear Power. IET. p. 14. ISBN   978-0-86341-668-2.
  6. 1 2 3 4 5 6 7 8 9 10 11 J. C. Clayton, "The Shippingport Pressurized Water Reactor and Light Water Breeder Reactor", Westinghouse Report WAPD-T-3007, 1993
  7. 1 2 Mann, Alfred K. (1999). For Better or for Worse: The Marriage of Science and Government in the United States. Columbia University Press. p. 113. ISBN   978-0-231-50566-6.
  8. 1 2 Kasten, P. R. (1998). "[ permanent dead link ]" Science & Global Security, 7(3), 237-269.
  9. 1 2 "Light Water Breeder Reactor: Adapting A Proven System". Archived from the original on October 28, 2012.
  10. Hore-Lacy, Ian (2010). Nuclear Energy in the 21st Century: World Nuclear University Press. Academic Press. p. 149. ISBN   978-0-08-049753-2.
  11. Hewlett, Richard G.; Holl, Jack M. (1989). Atoms for Peace and War, 1953-1961: Eisenhower and the Atomic Energy Commission. University of California Press. p. 421. ISBN   978-0-520-06018-0.
  12. Nichols, Kenneth (1987). The Road to Trinity: A Personal Account of How America's Nuclear Policies Were Made. New York: William Morrow. pp. 326–8. ISBN   068806910X.
  13. Forsberg, C.W.; Takase, K.; Nakatsuka, N. (2011). "Water Reactor". In Xing L. Yan, Ryutaro Hino (ed.). Nuclear Hydrogen Production Handbook. CRC Press. p. 192. ISBN   978-1-4398-1084-2.
  14. Olson, G.L.; McCardell, R.K.; Illum, D.B. (2002). "Fuel Summary Report: Shippingport Light Water Breeder Reactor" (PDF). Idaho National Engineering and Environmental Laboratory. Archived from the original (PDF) on 2015-11-07. Retrieved 2016-11-07.
  15. Thorium information from the World Nuclear Association
  16. "Shippingport". Archived from the original on November 13, 2005. Retrieved 2006-06-24.
  17. 1 2 "Nuclear Energy Decommissioning" . Retrieved 2006-06-24.
  18. Duerr, David (March 1990). "Lift of Shippingport Reactor Pressure Vessel". Journal of Construction Engineering and Management. 116 (1): 188–197. doi:10.1061/(ASCE)0733-9364(1990)116:1(188).
  19. Duerr, David (September 1991). "Transportation of Shippingport Reactor Pressure Vessel". Journal of Construction Engineering and Management. 117 (3): 551–564. doi:10.1061/(ASCE)0733-9364(1991)117:3(551).
  20. "Yankee Nuclear Power Plant". www.yankeerowe.com.
  21. "Maine Yankee USA Nuclear Power Station Project". Power Technology | Energy News and Market Analysis. Retrieved 2021-10-30.
  22. "Connecticut Yankee". www.connyankee.com.