This article needs additional citations for verification .(September 2016) |
The Army Nuclear Power Program (ANPP) was a program of the United States Army to develop small pressurized water and boiling water nuclear power reactors to generate electrical and space-heating energy primarily at remote, relatively inaccessible sites. The ANPP had several accomplishments, but ultimately it was considered to be "a solution in search of a problem." The U.S. Army Engineer Reactors Group managed this program and it was headquartered at Fort Belvoir, Virginia. The program began in 1954 as the Army Reactors Branch and had effectively terminated by about 1977, with the last class of NPP operators graduating in 1977. Work continued for some time thereafter either for decommissioning of the plants or placing them into SAFSTOR (long term storage and monitoring before decommissioning). The current[ when? ] development of small modular reactors has led to a renewed interest in military applications. [1] [2] [3]
There was interest in the possible application of nuclear power to land-based military needs as early as 1952. A memo from the Secretary of Defense, dated 10 February 1954, assigned the Army the responsibility for "developing nuclear power plants to supply heat and electricity at remote and relatively inaccessible military installations." The Secretary of the Army established the Army Nuclear Power Program and assigned it to the Corps of Engineers. [4]
The Atomic Energy Act of 1954 made the Atomic Energy Commission (AEC) responsible for R&D in the nuclear field, so that the ANPP then became a joint interagency 'activity' of the Department of the Army (DA) and the AEC. When the Atomic Energy Act was revised in 1954, Paragraph 91b authorized the Department of Defense to obtain special nuclear material for use in defense utilization facilities. The focus of the Army Nuclear Power Program was on power production facilities while the Naval Reactors Program concentrated on nuclear propulsion for submarines and ships. On 9 April 1954 the Chief of Engineers established the US Army Engineer Reactors Group to perform the missions assigned by DA. Essentially, these missions were to: [4]
In a Department of the Army Approved Qualitative Materiel Development Objective for Nuclear Power Plants, dated 7 January 1965, these objectives were stated for the program: [4]
The AEC ultimately concluded that the probability of achieving the objectives of the Army Nuclear Power Program in a timely manner and at a reasonable cost was not high enough to justify continued funding of its portion of projects to develop small, stationary, and mobile reactors. Cutbacks in military funding for long-range research and development because of the Vietnam War led the AEC to phase out its support of the program in 1966. The costs of developing and producing compact nuclear power plants were so high that they could be justified only if the reactor had a unique capability and filled a clearly defined objective backed by DOD. After that, the Army's participation in nuclear power plant research and development efforts steadily declined and eventually stopped altogether. [5]
Eight plants were constructed. Due to the requirement for a small physical size, all these reactors other than the MH-1A used highly enriched uranium (HEU). The MH-1A had more space to work with, and more weight-carrying capacity, so this was a low-enrichment reactor; i.e., larger and heavier. The MH-1A was briefly considered for use in Vietnam, but the idea of anything nuclear in Vietnam was quickly rejected by the State Department. [4]
The plants are listed in order of their initial criticality. See the gallery of photos in the next section. Sources for this data include the only known book on the ANPP, by Suid, [6] and a DOE document. [7]
In 1961, after the SL-1 plant explosion, General Alvin Luedecke, the General Manager of the AEC, temporarily prevented the startup of the PM-2A until an interlock could be installed on the central control rod. While the interlock could be operated by personnel, General Luedecke would have to be notified first. [14] The PM-2A was the only reactor besides SL-1 that had a central control rod that could startup the reactor on its own.
We gave explicit instructions on the 8th of January that this reactor, which was shut down at the time, would not be started until we had reviewed the situation. It was necessary for us to issue instructions to modify mechanisms of the PM-2A so that no single rod could be raised to a point where criticality could automatically occur. [14]
PM-2A successfully powered Camp Century for three years. The pressure vessel was also used to investigate neutron embrittlement in carbon steel. This plant was shut down 1963–1964. However despite the reactor's successes, Project Iceworm was never fielded and Camp Century was later abandoned.
Key to the codes:
Of the eight built, six produced operationally useful power for an extended period. Many of the designs were based on United States Naval reactors, which were proven compact reactor designs.[ citation needed ]
References for this list include the DOE document, [7] the Suid book, [6] and the Briefing Book. [4]
The Nuclear Power Plant Operator Course (NPPOC) was conducted at Ft. Belvoir. Applicants for the program were enlisted men who had to commit to serving a minimum of two years after completion of training. The requirements for admission to the NPPOC included aptitude test scores at least as stringent as those required for admission to Officer Candidate School. [22] Over 1,000 Nuclear Power Plant operators were licensed between the years 1958 through 1977. The NPPOC was an intense and academically challenging year-long course. [23]
The CANDU is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide moderator and its use of uranium fuel. CANDU reactors were first developed in the late 1950s and 1960s by a partnership between Atomic Energy of Canada Limited (AECL), the Hydro-Electric Power Commission of Ontario, Canadian General Electric, and other companies.
A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reaction. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. When a fissile nucleus like uranium-235 or plutonium-239 absorbs a neutron, it splits into lighter nuclei, releasing energy, gamma radiation, and free neutrons, which can induce further fission in a self-sustaining chain reaction. The process is carefully controlled using control rods and neutron moderators to regulate the number of neutrons that continue the reaction, ensuring the reactor operates safely.
Enriched uranium is a type of uranium in which the percent composition of uranium-235 has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238, uranium-235, and uranium-234. 235U is the only nuclide existing in nature that is fissile with thermal neutrons.
Fort Greely is a census-designated place (CDP) in Southeast Fairbanks Census Area, Alaska, United States. It is home to the Fort Greely military installation. At the 2010 census the population was 539, up from 461 in 2000.
A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants. In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a steam generator, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated. The steam then drives turbines, which spin an electric generator. In contrast to a boiling water reactor (BWR), pressure in the primary coolant loop prevents the water from boiling within the reactor. All light-water reactors use ordinary water as both coolant and neutron moderator. Most use anywhere from two to four vertically mounted steam generators; VVER reactors use horizontal steam generators.
The A2W reactor is a naval nuclear reactor used by the United States Navy to provide electricity generation and propulsion on warships. The A2W designation stands for:
Stationary Low-Power Reactor Number One, also known as SL-1, initially the Argonne Low Power Reactor (ALPR), was a United States Army experimental nuclear reactor in the western United States at the National Reactor Testing Station (NRTS) in Idaho about forty miles (65 km) west of Idaho Falls, now the Idaho National Laboratory. On January 3, 1961, at 9:01 pm MST, an operator fully pulled out the reactor's central control rod, causing the reactor to go from fully shutdown to prompt critical. The intense heat from the nuclear reaction expanded the water inside the reactor core, producing extreme water hammer and causing water, steam, reactor components, debris, and fuel to vent from the top of the reactor where the three operators were working. As the water struck the top of the reactor vessel, it propelled the entire reactor vessel to the ceiling of the reactor room where it struck the overhead crane. A supervisor who had been on top of the reactor lid was impaled by an expelled control rod shield plug and pinned to the ceiling. The release of materials hit the two other operators, mortally injuring them. The reactor vessel then fell down to its original position.
The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron reactors are the most common type of nuclear reactor, and light-water reactors are the most common type of thermal-neutron reactor.
The Enrico Fermi Nuclear Generating Station is a nuclear power plant on the shore of Lake Erie near Monroe, in Frenchtown Charter Township, Michigan on approximately 1,000 acres (400 ha). All units of the plant are operated by the DTE Energy Electric Company and owned by parent company DTE Energy. It is approximately halfway between Detroit, Michigan, and Toledo, Ohio. It is also visible from parts of Amherstburg and Colchester, Ontario as well as on the shore of Lake Erie in Ottawa County, Ohio. Two units have been constructed on this site. The first unit's construction started on August 4, 1956 and reached initial criticality on August 23, 1963, and the second unit received its construction permit on September 26, 1972. It reached criticality on June 21, 1985 and was declared commercial on November 18, 1988. The plant is connected to two single-circuit 345 kV Transmission Lines and three 120 kV lines. They are operated and maintained by ITC Transmission.
The Shippingport Atomic Power Station was the world's first full-scale atomic electric power plant devoted exclusively to peacetime uses. It was located near the present-day Beaver Valley Nuclear Generating Station on the Ohio River in Beaver County, Pennsylvania, United States, about 25 miles (40 km) from Pittsburgh.
The Bhabha Atomic Research Centre (BARC) is India's premier nuclear research facility, headquartered in Trombay, Mumbai, Maharashtra, India. It was founded by Homi Jehangir Bhabha as the Atomic Energy Establishment, Trombay (AEET) in January 1954 as a multidisciplinary research program essential for India's nuclear program. It operates under the Department of Atomic Energy (DAE), which is directly overseen by the Prime Minister of India.
SM-1 was a 2-megawatt nuclear reactor developed by the American Locomotive Company (ALCO) and the United States Atomic Energy Commission (AEC) as part of the US Army Nuclear Power Program (ANPP) in the mid-1950s. The compact "package" reactor was designed to produce electricity and generate heat for remote military facilities. The first, the SM-1, served as the Army's primary training facility to train reactor operations personnel from all three services. In 1954, the Department of Defense placed the US Army in charge of all military nuclear power plants except those used for propulsion by the US Navy. The Army's Chief of Engineers established the US Army Engineer Reactors Group in April 1954, and decided to construct the SM-1 facility at the Corps of Engineers headquarters at Fort Belvoir, Virginia, about 18 miles (29 km) south of Washington, D.C. About 800 personnel were trained on the SM-1 during its operational life, from 1957 to 1973. The power plant was shut down in March 1973, and is monitored within a "restricted access" section of the post. Inspectors enter the shut-down operations control room every decade or so. USACE has started dismantling the SM-1 facility, and estimate completion by 2026.
In the United States, nuclear power is provided by 92 commercial reactors with a net capacity of 94.7 gigawatts (GW), with 61 pressurized water reactors and 31 boiling water reactors. In 2019, they produced a total of 809.41 terawatt-hours of electricity, which accounted for 20% of the nation's total electric energy generation. In 2018, nuclear comprised nearly 50 percent of US emission-free energy generation.
In Pakistan, nuclear power is provided by six commercial nuclear power plants with a net capacity of 3,262 megawatts (3.262 GW) from pressurized water reactors. In 2020, Pakistan's nuclear power plants produced a total of 133 terawatt-hours of electricity, which accounted for roughly 10% of the nation's total electric energy generation.
The Hallam Nuclear Power Facility (HNPF) in Nebraska was a 75 MWe sodium-cooled graphite-moderated nuclear power plant built by Atomics International and operated by Consumers Public Power District of Nebraska. It was built in tandem with and co-located with a conventional coal-fired power station, the Sheldon Power Station. The facility featured a shared turbo generator that could accept steam from either heat source, and a shared control room.
MH-1A was the first floating nuclear power station. Named Sturgis after General Samuel D. Sturgis, Jr., this pressurized water reactor built in a converted Liberty ship was part of a series of reactors in the US Army Nuclear Power Program, which aimed to develop small nuclear reactors to generate electrical and space-heating energy primarily at remote, relatively inaccessible sites. Its designation stood for mobile, high power. After its first criticality in 1967, MH-1A was towed to the Panama Canal Zone that it supplied with 10 MW of electricity. Its dismantling began in 2014 and was completed in March 2019.
SS Charles H. Cugle was a Type Z-EC2-S-C5 Liberty ship built by J.A. Jones Construction of Panama City, Florida, launched on 13 August 1945. It was ordered by the War Shipping Administration under Maritime Commission Contract number 3145.
The Pakistan Atomic Research Reactor or (PARR) are two nuclear research reactors and two other experimental neutron sources located in the PINSTECH Laboratory, Nilore, Islamabad, Pakistan.
The Materials Testing Reactor (MTR) was an early nuclear reactor specifically designed to facilitate the conception and the design of future reactors. It produced much of the foundational irradiation data that underlies the nuclear power industry. It operated in Idaho at the National Reactor Testing Station from 1952 to 1970 and was fully decommissioned in 2011.
The TR-2 nuclear reactor, also known as the Westinghouse Test Reactor or Westinghouse Testing Reactor (WTR) was a small research and test reactor designed and manufactured by Westinghouse Electric Corporation at their Waltz Mill site near Madison, Pennsylvania, approximately 30 miles southeast of Pittsburgh. TR-2 was the first privately owned research and test reactor. The reactor suffered an accident which involved severe fuel damage in 1960.
{{cite magazine}}
: CS1 maint: date and year (link)