Molten-Salt Reactor Experiment

Last updated
MSRE plant diagram: (1) Reactor vessel, (2) Heat exchanger, (3) Fuel pump, (4) Freeze flange, (5) Thermal shield, (6) Coolant pump, (7) Radiator, (8) Coolant drain tank, (9) Fans, (10) Fuel drain tanks, (11) Flush tank, (12) Containment vessel, (13) Freeze valve. Also note Control area in upper left and Chimney upper right. MSRE Diagram.png
MSRE plant diagram: (1) Reactor vessel, (2) Heat exchanger, (3) Fuel pump, (4) Freeze flange, (5) Thermal shield, (6) Coolant pump, (7) Radiator, (8) Coolant drain tank, (9) Fans, (10) Fuel drain tanks, (11) Flush tank, (12) Containment vessel, (13) Freeze valve. Also note Control area in upper left and Chimney upper right.

The Molten-Salt Reactor Experiment (MSRE) was an experimental molten-salt reactor research reactor at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. This technology was researched through the 1960s, the reactor was constructed by 1964, it went critical in 1965, and was operated until 1969. [1] The costs of a cleanup project were estimated at $130 million.

Contents

Initially designed for 15 MWth, the MSRE was operated at 7.4 MWth because of imprecise nuclear cross section data. It was a test reactor simulating the neutronic "kernel" of a type of inherently safer epithermal thorium breeder reactor called the liquid fluoride thorium reactor. It primarily used two fuels: first uranium-235 and later uranium-233. The latter 233UF4 was the result of breeding from thorium in other reactors. Since this was an engineering test, the large, expensive breeding blanket of thorium salt was omitted in favor of neutron measurements.

In the MSRE, the heat from the reactor core was shed via a cooling system using air blown over radiators. It is thought similar reactors could power high-efficiency heat engines such as closed-cycle gas turbines. The MSRE's piping, core vat and structural components were made from Hastelloy-N, and its moderator was a pyrolytic graphite core. The fuel for the MSRE was LiF-BeF2-ZrF4-UF4 (65-29.1-5-0.9 mole %). The secondary coolant was FLiBe (2LiF-BeF2), and it operated as hot as 650 °C and operated for the equivalent of about 1.5 years of full power operation.

The result promised to be a simple, reliable reactor. The purpose of the Molten-Salt Reactor Experiment was to demonstrate that some key features of the proposed molten-salt power reactors could be embodied in a practical reactor that could be operated safely and reliably and be maintained without excessive difficulty. For simplicity, it was to be a fairly small, one-fluid (i.e. non-breeding) reactor operating at 10 MWth or less, with heat rejection to the air via a secondary (fuel-free) salt.

Reactor description

Molten salt reactor MoltenSaltReactor.jpg
Molten salt reactor

Core

Graphite MSRE core MSRE Core.JPG
Graphite MSRE core

The pyrolytic graphite core, grade CGB, also served as the moderator. [1] [2] Before the MSRE development began, tests had shown that salt would not permeate graphite in which the pores were on the order of a micrometer. However, graphite with the desired pore structure was available only in small, experimentally prepared pieces, and when a manufacturer set out to produce a new grade (CGB) to meet the MSRE requirements, difficulties were encountered. [3]

Fuel

The fuel was 7LiF-BeF2-ZrF4-UF4 (65-29.1-5-0.9 mole %). The first fuel was 33% 235U; later a smaller amount of 233UF4 was used. By 1960 a better understanding of fluoride salt based molten-salt reactors had emerged from earlier molten salt reactor research for the Aircraft Reactor Experiment. Fluoride salts are strongly ionic, and when melted they are stable at high temperatures, low pressures, and high radiation fluxes. Stability at low pressure permits less robust reactor vessels and increases reliability. The high reactivity of fluorine traps most fission reaction byproducts. It appeared that the fluid salt would permit on-site chemical separation of the fuel and wastes.

The fuel system was located in sealed cells, laid out for maintenance with long-handled tools through openings in the top shielding. A tank of LiF-BeF2 salt was used to flush the fuel circulating system before and after maintenance. In a cell adjacent to the reactor was a simple facility for bubbling gas through the fuel or flush salt: H2-hydrogen fluoride mixture, in roughly 10:1 ratio, to remove oxide, fluorine to remove uranium as uranium hexafluoride. [4] [5] [6]

Molten FLiBe FLiBe.png
Molten FLiBe

The secondary coolant was LiF-BeF2 (66–34 mole %).

Pump

The bowl of the fuel pump was the surge space for the circulating loop, and here about 50 US gallons per minute (190 L/min) of fuel was sprayed into the gas space to allow xenon and krypton to escape from the salt. Removing the most significant neutron poison xenon-135 made the reactor safer and easier to restart. In solid-fuel reactors, on restart the 135Xe in the fuel absorbs neutrons, followed by a sudden jump in reactivity as the 135Xe is burned out. Conventional reactors may have to wait hours until xenon-135 decays after shutting down and not immediately restarting (so-called iodine pit ).

Also in the pump bowl was a port through which salt samples could be taken or capsules of concentrated fuel-enriching salt (UF4-LiF or PuF3) could be introduced.

Air-cooled heat exchangers

MSRE air-cooled heat exchanger glowing a dull red due to high temperature. MSRE Heat Exchanger.JPG
MSRE air-cooled heat exchanger glowing a dull red due to high temperature.

At the time, the high temperatures were seen almost as a disadvantage because they hampered use of conventional steam turbines. Now, such temperatures are seen as an opportunity to use high-efficiency closed-cycle gas turbines.[ citation needed ] After two months of high-power operation, the reactor was down for 3 months because of the failure of one of the main cooling blowers.

Neutronics and thermal-hydraulics

The reactor experienced stable neutronic operation. If temperatures increased or bubbles formed, the volume of the fluid fuel salts would increase and some fluid fuel salts would be forced out of the core, thereby reducing the reactivity. The MSRE development program did not include reactor physics experiments or heat transfer measurements. There was enough latitude in the MSRE that deviations from predictions would not compromise safety or accomplishment of the objectives of the experimental reactor.

Building grounds

Aircraft Reactor Experiment building at ORNL that was retrofitted to house the MSRE. ARE Building.JPG
Aircraft Reactor Experiment building at ORNL that was retrofitted to house the MSRE.

Construction of the primary system components and alterations of the old Aircraft Reactor Experiment building (which had been partly remodeled for a proposed 60 MWth aircraft reactor) were started in 1962. Installation of the salt systems was completed in mid-1964. ORNL was responsible for quality assurance, planning, and management of construction. [7] The primary systems were installed by ORNL personnel; subcontractors modified the building and installed ancillary systems.

Structural alloy Hastelloy-N

Hastelloy-N—a low chromium, nickelmolybdenum alloy—was used in the MSRE and proved compatible with the fluoride salts FLiBe and FLiNaK. [8] All metal parts contacting salt were made of Hastelloy-N. The choice of Hastelloy-N for the MSRE was on the basis of the promising results of tests at aircraft nuclear propulsion conditions and the availability of much of the required metallurgical data. Development for the MSRE generated the further data required for ASME code approval. It also included preparation of standards for Hastelloy-N procurement and for component fabrication.

Almost 200,000 lb (90,000 kg) in a variety of shapes of material for the MSRE were produced commercially. Requests for bids on component fabrication went to several companies in the nuclear fabrication industry, but all declined to submit lump-sum bids because of lack of experience with the new alloy. Consequently, all major components were fabricated in U.S. Atomic Energy Commission-owned shops at Oak Ridge and Paducah, Kentucky. [9]

At the time that design stresses were set for the MSRE, the data that was available indicated that the strength and creep rate of Hastelloy-N were hardly affected by irradiation. After the construction was well along, the stress-rupture life and fracture strain were found to be drastically reduced by thermal neutron irradiation. The MSRE stresses were reanalyzed, and it was concluded that the reactor would have adequate life to reach its goals. At the same time a program was launched to improve the resistance of Hastelloy-N to the embrittlement. [10]

An out-of-pile corrosion test program was carried out for Hastelloy-N, [11] which indicated extremely low corrosion rates at MSRE conditions. Capsules exposed in the Materials Testing Reactor showed that salt fission power densities of more than 200 W/cm3 had no adverse effects on compatibility of fuel salt, Hastelloy-N, and graphite. Fluorine gas was found to be produced by radiolysis of frozen salts, but only at temperatures below about 212 °F (100 °C). [12]

Components that were developed especially for the MSRE included flanges for 5-inch (130 mm) lines carrying molten salt, freeze valves (an air-cooled section where salt could be frozen and thawed), flexible control rods to operate in thimbles at 1,200 °F (649 °C), and the fuel sampler-enricher. [13] Centrifugal pumps were developed similar to those used successfully in the aircraft reactor program, but with provisions for remote maintenance, and including a spray system for xenon removal. Remote maintenance considerations pervaded the MSRE design, and developments included devices for remotely cutting and brazing together 1+12 inches (38 mm) pipe, removable heater-insulation units, and equipment for removing specimens of metal and graphite from the core.

Development and construction

Most of the MSRE effort from 1960 through 1964 was devoted to design, development, and construction of the MSRE. Production and further testing of graphite and Hastelloy-N, both in-pile and out, were major development activities. Others included work on reactor chemistry, development of fabrication techniques for Hastelloy-N, development of reactor components, and remote-maintenance planning and preparations. [14]

Operation

Alvin M. Weinberg noting "6000 full-power hours!" of MSRE operation, in 1967. ORNL Alvin Weinberg MSRE 6Kh.jpg
Alvin M. Weinberg noting "6000 full-power hours!" of MSRE operation, in 1967.

The MSRE operated for 5 years. The salt was loaded in 1964, and nuclear operation ended in December 1969, [4] [15] and all the objectives of the experiment were achieved during this period.

Checkout and prenuclear tests included 1,000 hours of circulation of flush salt and fuel carrier salt. Nuclear testing of the MSRE began in June 1965, with the addition of enriched 235U as UF4-LiF eutectic to the carrier salt to make the reactor critical. After zero-power experiments to measure rod worth and reactivity coefficients, [16] the reactor was shut down and final preparations made for power operation. Power ascension was delayed when vapors from oil that had leaked into the fuel pump were polymerized by the radioactive offgas and plugged gas filters and valves. Maximum power, which was limited to 7.4 MWth by the capability of the heat-rejection system, was reached in May 1966.

After two months of high-power operation, the reactor was down for three months because of the failure of one of the main cooling blowers. Some further delays were encountered because of offgas line plugging, but by the end of 1966 most of the startup problems were behind. During the next 15 months, the reactor was critical 80% of the time, with runs of 1, 3, and 6 months that were uninterrupted by a fuel drain. By March 1968, the original objectives of the MSRE had been accomplished, and nuclear operation with 235U was concluded.

AEC Chairman Seaborg at the MSRE controls in 1968 for startup with U-233. MSRE U-233 Seaborg (14480987473).jpg
AEC Chairman Seaborg at the MSRE controls in 1968 for startup with U-233.

By this time, ample 233U had become available, [17] so the MSRE program was extended to include substitution of 233U for the uranium in the fuel salt, and operation to observe the new nuclear characteristics. Using the on-site processing equipment the flush salt and fuel salt were fluorinated to recover the uranium in them as UF6. [6] 233UF4-LiF eutectic was then added to the carrier salt, and in October 1968, the MSRE became the world's first reactor to operate on 233U.

The 233U zero-power experiments and dynamics tests confirmed the predicted neutronic characteristics. An unexpected consequence of processing the salt was that its physical properties were altered slightly so that more than the usual amount of gas was entrained from the fuel pump into the circulating loop. The circulating gas and the power fluctuations that accompanied it were eliminated by operating the fuel pump at slightly lower speed. Operation at high power for several months permitted accurate measurement of the capture-to-fission ratio, for 233U in this reactor, completing the objectives of the 233U operation.

In the concluding months of operation, xenon stripping, deposition of fission products, and tritium behavior were investigated. The feasibility of using plutonium in molten-salt reactors was emphasized by adding PuF3 as makeup fuel during this period.

After the final shutdown in December 1969, the reactor was left in standby for nearly a year. A limited examination program was then carried out, including a moderator bar from the core, a control rod thimble, heat exchanger tubes, parts from the fuel pump bowl, and a freeze valve that had developed a leak during the final reactor shutdown. The radioactive systems were then closed to await ultimate disposal.

Statistics

Parameters and operational statistics: [2]

Power: 8 MW (thermal)
output: 92.8 GWh
equivalent full-power: 11,555 h

Fuel salt: fluoride
cations: 65% Li-7, 29.1% Be, 5% Zr, 0.9% U
weight: 11,260 lbs (5,107 kg)
melting temp: 813 F (434 C)
inlet temp: 1175 F (635 C)
outlet temp: 1225 F (663 C)
flow rate: 400 gal/min (1514 l/min)
fuel pump circulating: 19,405 h

Coolant salt: fluoride
cations: 66% Li-7, 34% Be
weight: 15,300 lbs (6,940 kg)
coolant pump circulating: 23,566 h

Moderator: nuclear graphite

Container: Hastelloy-N

First fuel: U-235
first critical: 1 June 1965
thermal output: 72,441 MWh
critical hours: 11,515 h
full-power output equivalent: 9,006 h

Second fuel: U-233
critical: 2 October 1968
thermal output: 20,363 MWh
critical hours: 3,910 h
full-power output equivalent: 2,549 h

Shutdown: December 1969

Results

The broadest and perhaps most important conclusion from the MSRE experience was that a molten salt fueled reactor concept was viable. It ran for considerable periods of time, yielding valuable information, and maintenance was accomplished safely and without excessive delay.

The MSRE confirmed expectations and predictions. [15] For example, it was demonstrated that: the fuel salt was immune to radiation damage, the graphite was not attacked by the fuel salt, and the corrosion of Hastelloy-N was negligible. Noble gases were stripped from the fuel salt by a spray system, reducing the 135Xe poisoning by a factor of about 6. The bulk of the fission product elements remained stable in the salt. Additions of uranium and plutonium to the salt during operation were quick and uneventful, and recovery of uranium by fluorination was efficient. The neutronics, including critical loading, reactivity coefficients, dynamics, and long-term reactivity changes, agreed with prior calculations.

In other areas, the operation resulted in improved data or reduced uncertainties. The 233U capture-to-fission ratio in a typical MSR neutron spectrum is an example of basic data that was improved. The effect of fissioning on the redox potential of the fuel salt was resolved. The deposition of some elements ("noble metals") was expected, but the MSRE provided quantitative data on relative deposition on graphite, metal, and liquid-gas interfaces. Heat transfer coefficients measured in the MSRE agreed with conventional design calculations and did not change over the life of the reactor. Limiting oxygen in the salt proved effective, and the tendency of fission products to be dispersed from contaminated equipment during maintenance was low.

Operation of the MSRE provided insights into the problem of tritium in a molten-salt reactor. It was observed that about 6–10% of the calculated 54 Ci/day (2.0  TBq) production diffused out of the fuel system into the containment cell atmosphere and another 6–10% reached the air through the heat removal system. [18] The fact that these fractions were not higher, indicated that something partially negated the transfer of tritium through hot metals.

One unexpected finding was inter-granular cracking in all metal surfaces exposed to the fuel salt. The cause of the embrittlement was tellurium, a fission product generated in the fuel. This was first noted in the specimens that were removed from the core at intervals during the reactor operation. Post-operation examination of pieces of a control-rod thimble, heat-exchanger tubes and pump bowl parts revealed the ubiquity of the cracking and emphasized its importance to the MSR concept. The crack growth was rapid enough to become a problem over the planned 30-year life of a follow-on thorium breeder reactor. This cracking could in short-term be reduced by adding small amounts of niobium to the Hastelloy-N. However, further studies were needed to assess the effects of longer exposure times and some interaction parameters for the used mixtures. [19]

The operation experience gained with the MSRE showed that the following areas require further investigation for the successful operation of a commercial MSR:

Decommissioning

As of 2019, the MSRE is in a SAFESTOR state, meaning it still intact but shut down and actively monitored and maintained. [21]

After shutdown, the salt was believed to be in long-term safe storage. At low temperatures, radiolysis can free fluorine from the salt. As a countermeasure, the salt was annually reheated to about 302 °F (150 °C) until 1989. [22] But beginning in the mid-1980s, there was concern that radioactivity was migrating through the system, reported by an ORNL employee who was among 125 people working above the reactor, which had not been decontaminated or decommissioned. Department of Energy Oak Ridge Operations Manager Joe Ben LaGrone ordered evacuation of 125 employees, based on findings reported to him inspector William Dan DeFord, P.E. [23]

Sampling in 1994 revealed concentrations of uranium that created a potential for a nuclear criticality accident, as well as a potentially dangerous build-up of fluorine gas: the environment above the solidified salt was approximately one atmosphere of fluorine.[ citation needed ] The ensuing decontamination and decommissioning project was called "the most technically challenging" activity assigned to Bechtel Jacobs under its environmental management contract with the U.S. Department of Energy's Oak Ridge Operations organization.

In 2003, the MSRE cleanup project was estimated at $130 million, with decommissioning expected to be completed in 2009. [24] Removal of uranium from the salt was completed in March 2008, however still leaving the salt with the fission products in the tanks. [25] Much of the high cost was caused by the unpleasant surprise of fluorine and uranium hexafluoride evolution from cold fuel salt in storage that ORNL did not defuel and store correctly, but this has now been taken into consideration in MSR design. [26]

A potential decommissioning process has been described; [27] uranium is to be removed from the fuel as the hexafluoride by adding excess fluorine, and plutonium as the plutonium dioxide by adding sodium carbonate.

35°55′18″N84°18′24″W / 35.92178°N 84.30672°W / 35.92178; -84.30672

See also

Related Research Articles

<span class="mw-page-title-main">Nuclear reactor</span> Device used to initiate and control a nuclear chain reaction

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. As of 2022, the International Atomic Energy Agency reports there are 422 nuclear power reactors and 223 nuclear research reactors in operation around the world.

Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency. Such design features tend to rely on the engineering of components such that their predicted behaviour would slow down, rather than accelerate the deterioration of the reactor state; they typically take advantage of natural forces or phenomena such as gravity, buoyancy, pressure differences, conduction or natural heat convection to accomplish safety functions without requiring an active power source. Many older common reactor designs use passive safety systems to a limited extent, rather, relying on active safety systems such as diesel-powered motors. Some newer reactor designs feature more passive systems; the motivation being that they are highly reliable and reduce the cost associated with the installation and maintenance of systems that would otherwise require multiple trains of equipment and redundant safety class power supplies in order to achieve the same level of reliability. However, weak driving forces that power many passive safety features can pose significant challenges to effectiveness of a passive system, particularly in the short term following an accident.

<span class="mw-page-title-main">Molten-salt reactor</span> Type of nuclear reactor cooled by molten material

A molten-salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a mixture of molten salt with a fissionable material.

<span class="mw-page-title-main">Nuclear fuel</span> Material fuelling nuclear reactors

Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission. Nuclear fuel has the highest energy density of all practical fuel sources. The processes involved in mining, refining, purifying, using, and disposing of nuclear fuel are collectively known as the nuclear fuel cycle.

Uranium-233 is a fissile isotope of uranium that is bred from thorium-232 as part of the thorium fuel cycle. Uranium-233 was investigated for use in nuclear weapons and as a reactor fuel. It has been used successfully in experimental nuclear reactors and has been proposed for much wider use as a nuclear fuel. It has a half-life of 160,000 years.

<span class="mw-page-title-main">Aircraft Reactor Experiment</span> Feasibility experiment for aircraft nuclear propulsion

The Aircraft Reactor Experiment (ARE) was an experimental nuclear reactor designed to test the feasibility of fluid-fuel, high-temperature, high-power-density reactors for the propulsion of supersonic aircraft. It operated from November 8–12, 1954, at the Oak Ridge National Laboratory (ORNL) with a maximum sustained power of 2.5 megawatts (MW) and generated 96 MW-hours of energy.

<span class="mw-page-title-main">Aqueous homogeneous reactor</span> Type of nuclear reactor

Aqueous homogeneous reactors (AHR) is a two (2) chamber reactor consisting of an interior reactor chamber and an outside cooling and moderating jacket chamber. They are a type of nuclear reactor in which soluble nuclear salts are dissolved in water. The fuel is mixed with heavy or light water which partially moderates and cools the reactor. The outside layer of the reactor has more water which also partially cools and acts as a moderator. The water can be either heavy water or ordinary (light) water, which slows neutrons and helps facilitate a stable reaction, both of which need to be very pure.

Generation IVreactors are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) – an international organization that coordinates the development of generation IV reactors – specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost. The World Nuclear Association in 2015 suggested that some might enter commercial operation before 2030.

<span class="mw-page-title-main">Aircraft Nuclear Propulsion</span> U.S. project 1946–1961

The Aircraft Nuclear Propulsion (ANP) program and the preceding Nuclear Energy for the Propulsion of Aircraft (NEPA) project worked to develop a nuclear propulsion system for aircraft. The United States Army Air Forces initiated Project NEPA on May 28, 1946. NEPA operated until May 1951, when the project was transferred to the joint Atomic Energy Commission (AEC)/USAF ANP. The USAF pursued two different systems for nuclear-powered jet engines, the Direct Air Cycle concept, which was developed by General Electric, and Indirect Air Cycle, which was assigned to Pratt & Whitney. The program was intended to develop and test the Convair X-6, but was canceled in 1961 before that aircraft was built. The total cost of the program from 1946 to 1961 was about $1 billion.

<span class="mw-page-title-main">Thorium fuel cycle</span> Nuclear fuel cycle

The thorium fuel cycle is a nuclear fuel cycle that uses an isotope of thorium, 232
Th
, as the fertile material. In the reactor, 232
Th
is transmuted into the fissile artificial uranium isotope 233
U
which is the nuclear fuel. Unlike natural uranium, natural thorium contains only trace amounts of fissile material, which are insufficient to initiate a nuclear chain reaction. Additional fissile material or another neutron source is necessary to initiate the fuel cycle. In a thorium-fuelled reactor, 232
Th
absorbs neutrons to produce 233
U
. This parallels the process in uranium breeder reactors whereby fertile 238
U
absorbs neutrons to form fissile 239
Pu
. Depending on the design of the reactor and fuel cycle, the generated 233
U
either fissions in situ or is chemically separated from the used nuclear fuel and formed into new nuclear fuel.

<span class="mw-page-title-main">Alvin M. Weinberg</span> American nuclear physicist (1915–2006)

Alvin Martin Weinberg was an American nuclear physicist who was the administrator of Oak Ridge National Laboratory (ORNL) during and after the Manhattan Project. He came to Oak Ridge, Tennessee, in 1945 and remained there until his death in 2006. He was the first to use the term "Faustian bargain" to describe nuclear energy.

<span class="mw-page-title-main">Graphite-moderated reactor</span> Type of nuclear reactor

A graphite-moderated reactor is a nuclear reactor that uses carbon as a neutron moderator, which allows natural uranium to be used as nuclear fuel.

<span class="mw-page-title-main">Liquid fluoride thorium reactor</span> Type of nuclear reactor that uses molten material as fuel

The liquid fluoride thorium reactor is a type of molten salt reactor. LFTRs use the thorium fuel cycle with a fluoride-based molten (liquid) salt for fuel. In a typical design, the liquid is pumped between a critical core and an external heat exchanger where the heat is transferred to a nonradioactive secondary salt. The secondary salt then transfers its heat to a steam turbine or closed-cycle gas turbine.

The FUJI molten salt reactor is a proposed molten-salt-fueled thorium fuel cycle thermal breeder reactor, using technology similar to the Oak Ridge National Laboratory's Molten Salt Reactor Experiment – liquid fluoride thorium reactor. It was being developed by the Japanese company International Thorium Energy & Molten-Salt Technology (IThEMS), together with partners from the Czech Republic. As a breeder reactor, it converts thorium into the nuclear fuel uranium-233. To achieve reasonable neutron economy, the chosen single-salt design results in significantly larger feasible size than a two-salt reactor. Like all molten salt reactors, its core is chemically inert and under low pressure, helping to prevent explosions and toxic releases. The proposed design is rated at 200 MWe output. The IThEMS consortium planned to first build a much smaller MiniFUJI 10 MWe reactor of the same design once it had secured an additional $300 million in funding.

<span class="mw-page-title-main">FLiBe</span> Chemical compound

FLiBe is the name of a molten salt made from a mixture of lithium fluoride (LiF) and beryllium fluoride. It is both a nuclear reactor coolant and solvent for fertile or fissile material. It served both purposes in the Molten-Salt Reactor Experiment (MSRE) at the Oak Ridge National Laboratory.

<span class="mw-page-title-main">Thorium-based nuclear power</span> Nuclear energy extracted from thorium isotopes

Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium. A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle—including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced nuclear waste production. One advantage of thorium fuel is its low weaponization potential. It is difficult to weaponize the uranium-233 that is bred in the reactor. Plutonium-239 is produced at much lower levels and can be consumed in thorium reactors.

<span class="mw-page-title-main">Integral Molten Salt Reactor</span>

The Integral Molten Salt Reactor (IMSR) is a nuclear power plant design targeted at developing a commercial product for the small modular reactor (SMR) market. It employs molten salt reactor technology which is being developed by the Canadian company Terrestrial Energy. It is based closely on the denatured molten salt reactor (DMSR), a reactor design from Oak Ridge National Laboratory. In addition, it incorporates some elements found in the SmAHTR, a later design from the same laboratory. The IMSR belongs to the DMSR class of molten salt reactors (MSR) and hence is a "burner" reactor that employs a liquid fuel rather than a conventional solid fuel. This liquid contains the nuclear fuel as well as serving as the primary coolant.

Herbert G. MacPherson was an American nuclear engineer and deputy director of Oak Ridge National Laboratory (ORNL). He contributed to the design and development of nuclear reactors and in the opinion of Alvin Weinberg he was "the country's foremost expert on graphite"...

Transatomic Power was an American company that designed Generation IV nuclear reactors based on molten salt reactor (MSR) technology.

The Molten-Salt Demonstration Reactor (MSDR) was a semi-commercial-scale experimental molten salt reactor (MSR) design developed at Oak Ridge National Laboratory (ORNL).

References

  1. 1 2 Molten-Salt Reactor Experiment 1965-1972 ORNL, Oct 2015 (8 MB) [Archive March 2016]
  2. 1 2 Molten Salt Reactor Experiment, Oct 2015 (2 MB)
  3. Briggs 1964 , pp. 373–309.
  4. 1 2 P.N. Haubenreich & J.R. Engel (1970). "Experience with the Molten-Salt Reactor Experiment" (PDF). Nuclear Applications and Technology. 8 (2): 118–136. doi:10.13182/NT8-2-118. Archived from the original (PDF, reprint) on 2015-01-29. Retrieved 2006-06-26.
  5. R.C. Robertson (January 1965). "MSRE Design and Operations Report, Part I, Description of Reactor Design". ORNL-TM-0728.{{cite journal}}: Cite journal requires |journal= (help)
  6. 1 2 R.B. Lindauer (August 1969). "Processing of the MSRE Flush and Fuel Salts". ORNL-TM-2578.{{cite journal}}: Cite journal requires |journal= (help)
  7. B.H. Webster (April 1970). "Quality-Assurance Practices in Construction and Maintenance of the MSRE". ORNL-TM-2999.{{cite journal}}: Cite journal requires |journal= (help)
  8. DeVan, Jackson H. "Effect of Alloying Additions on Corrosion Behavior of Nickel–Molybdenum Alloys in Fused Fluoride Mixtures." Thesis. University of Tennessee, 1960. Web. < "Archived copy" (PDF). Archived from the original (PDF) on 2011-07-23. Retrieved 2011-01-12.{{cite web}}: CS1 maint: archived copy as title (link)>.
  9. Briggs 1964 , pp. 63–52.
  10. H.E. McCoy; et al. (1970). "New Developments in Materials for Molten-Salt Reactors". Nuclear Applications and Technology. 8 (2): 156. doi:10.13182/NT70-A28622.
  11. Briggs 1964 , pp. 334–343.
  12. Briggs 1964 , pp. 252–257.
  13. Briggs 1964 , pp. 167–190.
  14. Briggs 1964.
  15. 1 2 M.W. Rosenthal; P.N. Haubenreich; H.E. McCoy & L.E. McNeese (1971). "Current Progress in Molten-Salt Reactor Development". Atomic Energy Review IX: 601–50.
  16. B.E. Prince; S.J. Ball; J.R. Engel; P.N. Haubenreich & T.W. Kerlin (February 1968). "Zero-Power Physics Experiments on the MSRE". ORNL-4233.{{cite journal}}: Cite journal requires |journal= (help)
  17. "Archived copy" (PDF). Archived (PDF) from the original on 2016-03-04. Retrieved 2012-10-11.{{cite web}}: CS1 maint: archived copy as title (link) (see PDF page 10) "The MSRE was fueled with 39 kilograms of 233U that contained ~220 parts per million (ppm) of 232U [...that was bred in] various Light Water Reactors that had operated on 235U (such as the Indian Point PWR)"
  18. R.B. Briggs (Winter 1971–1972). "Tritium in Molten-Salt Reactors". Reactor Technology. 14: 335–342.
  19. Keiser, J.R. (1977), Status of Tellurium-Hastelloy N Studies in Molten Fluoride Salts (PDF), Oak Ridge National Laboratories, ORNL/TM-6002, archived (PDF) from the original on 2012-03-24
  20. DoE (November 2023). "Monthly Meeting of the Oak Ridge Site Specific Advisory Board - Approved November 13, 2019, Meeting Minutes" (PDF). Retrieved May 30, 2024.
  21. DOE (2019). "ORSSAB Meeting - November 13, 2019" . Retrieved May 30, 2024.
  22. Disposition of the Fluoride Fuel and Flush Salts from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory, available as PDF Archived 2013-05-22 at the Wayback Machine
  23. "Ending the MSRE".
  24. R. Cathey Daniels, Elegant experiment puts wallop on cleanup, The Oak Ridger, April 8, 2003.
  25. "Archived copy" (PDF). Archived from the original (PDF) on 2013-02-22. Retrieved 2012-12-08.{{cite web}}: CS1 maint: archived copy as title (link)
  26. "Fluorine Production and Recombination in Frozen MSR Salts after Reactor Operation [Disc 5]" (PDF). Archived (PDF) from the original on 2012-05-02. Retrieved 2012-10-24.
  27. Evaluation of the U.S. Department of Energy's Alternatives for the Removal and Disposition of Molten Salt Reactor Experiment Fluoride Salts Archived 2007-05-13 at the Wayback Machine (1997), Commission on Geosciences, Environment and Resources

Further reading