UNGG reactor

Last updated
Two UNGG reactors at Saint-Laurent Nuclear Power Plant A1 A2 saint laurent.JPG
Two UNGG reactors at Saint-Laurent Nuclear Power Plant

The UNGG (Uranium Naturel Graphite Gaz) is an obsolete nuclear power reactor design developed in France. It was graphite moderated, cooled by carbon dioxide, and fueled with natural uranium metal. The first generation of French nuclear power stations were UNGGs, as was Vandellos unit 1 in Spain. Of the ten units built, all were shut down by the end of 1994, most for economic reasons due to staffing costs. A UNGG reactor is often simply referred to as an GCR in English documents.

Contents

Design

Schematic of a UNGG reactor HD.15.075 (11839817825).jpg
Schematic of a UNGG reactor
Cross section of UNGG fuel, showing internal cooling path Section cartouche combustible UNGG Bugey.png
Cross section of UNGG fuel, showing internal cooling path

The UNGG is along with the Magnox the main type of gas cooled reactor (GCR). It was developed independently of and parallel to the British Magnox design, both to meet similar requirements of simultaneous production of electric power and plutonium. Although the French and the British models both used natural uranium and the same moderator and coolant, there were differences in design. In France, each next built reactor had a different design. The first UNGG reactors at Marcoule used horizontal fuel channels and a concrete containment structure. [1] Chinon A1 used vertical fuel channels and a steel pressure-vessel.

The fuel cladding material was a magnesium-zirconium alloy in the UNGG, as opposed to magnesium-aluminium in Magnox. As both claddings react with water, they can be stored in a spent fuel pool only for short periods of time, making short-term reprocessing of fuel essential, which requires heavily shielded facilities.

The programe was a succession of units, with changes to the design increasing power output. In the experimental phase they were built by the Commissariat à l'Énergie Atomique (CEA), and later by Électricité de France (EDF). [1] The largest UNGG reactor built was Bugey 1 with a net electrical output of 540 MW.

Units

The earlier units, at Chinon and Marcoule, had heat exchangers outside the main pressure vessel; Later units (Saint-Laurent, Bugey and Vandellos) moved these heat exchangers to inside the pressure vessel.

See also

Related Research Articles

<span class="mw-page-title-main">Nuclear reactor</span> Device used to initiate and control a nuclear chain reaction

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. As of 2022, the International Atomic Energy Agency reports there are 422 nuclear power reactors and 223 nuclear research reactors in operation around the world.

<span class="mw-page-title-main">Advanced Gas-cooled Reactor</span> Type of nuclear reactor

The Advanced Gas-cooled Reactor (AGR) is a type of nuclear reactor designed and operated in the United Kingdom. These are the second generation of British gas-cooled reactors, using graphite as the neutron moderator and carbon dioxide as coolant. They have been the backbone of the UK's nuclear power generation fleet since the 1980s.

<span class="mw-page-title-main">RBMK</span> A high-power channel-type nuclear reactor

The RBMK is a class of graphite-moderated nuclear power reactor designed and built by the Soviet Union. The name refers to its design where, instead of a large steel pressure vessel surrounding the entire core, the core is surrounded by a cylindrical annular steel tank inside a concrete vault and each fuel assembly is enclosed in an individual 8 cm (inner) diameter pipe. The channels also contain the coolant, and are surrounded by graphite.

<span class="mw-page-title-main">Magnox</span> Type of nuclear reactor

Magnox is a type of nuclear power/production reactor that was designed to run on natural uranium with graphite as the moderator and carbon dioxide gas as the heat exchange coolant. It belongs to the wider class of gas-cooled reactors. The name comes from the magnesium-aluminium alloy, used to clad the fuel rods inside the reactor. Like most other "Generation I nuclear reactors", the Magnox was designed with the dual purpose of producing electrical power and plutonium-239 for the nascent nuclear weapons programme in Britain. The name refers specifically to the United Kingdom design but is sometimes used generically to refer to any similar reactor.

<span class="mw-page-title-main">Chapelcross nuclear power station</span> Decommissioned nuclear power plant in Scotland

Chapelcross nuclear power station is a decommissioned and partly demolished Magnox nuclear power station near Annan in Dumfries and Galloway in southwest Scotland, which was in operation from 1959 to 2004. It was the sister plant to the Calder Hall plant in Cumbria, England; both were commissioned and originally operated by the United Kingdom Atomic Energy Authority. The primary purpose of both plants was to produce weapons-grade plutonium for the UK's nuclear weapons programme, but they also generated electrical power for the National Grid.

<span class="mw-page-title-main">Lucens reactor</span> Decommissioned experimental nuclear reactor in Lucens, Vaud, Switzerland

The Lucens reactor was a 6 MW experimental nuclear power reactor built next to Lucens, Vaud, Switzerland. After its connection to the electrical grid on 29 January 1968, the reactor only operated for a few months before it suffered an accident on 21 January 1969. The cause was a corrosion-induced loss of heat dispersal leading to the destruction of a pressure tube which caused an adjacent pressure tube to fail, and partial meltdown of the core, resulting in radioactive contamination of the cavern.

<span class="mw-page-title-main">High-temperature gas reactor</span> Type of nuclear reactor that operates at high temperatures as part of normal operation

A high-temperature gas-cooled reactor (HTGR), is a nuclear reactor that uses a graphite moderator with a once-through uranium fuel cycle. The HTGR is a type of high-temperature reactor (HTR) that can conceptually have an outlet temperature of 750 °C (1,380 °F). The reactor core can be either a "prismatic block" or a "pebble-bed" core. The high temperatures enable applications such as process heat or hydrogen production via the thermochemical sulfur–iodine cycle.

<span class="mw-page-title-main">Gas-cooled fast reactor</span> Type of nuclear reactor cooled by a gas

The gas-cooled fast reactor (GFR) system is a nuclear reactor design which is currently in development. Classed as a Generation IV reactor, it features a fast-neutron spectrum and closed fuel cycle for efficient conversion of fertile uranium and management of actinides. The reference reactor design is a helium-cooled system operating with an outlet temperature of 850 °C using a direct Brayton closed-cycle gas turbine for high thermal efficiency. Several fuel forms are being considered for their potential to operate at very high temperatures and to ensure an excellent retention of fission products: composite ceramic fuel, advanced fuel particles, or ceramic clad elements of actinide compounds. Core configurations are being considered based on pin- or plate-based fuel assemblies or prismatic blocks, which allows for better coolant circulation than traditional fuel assemblies.

The Steam Generating Heavy Water Reactor (SGHWR) was a United Kingdom design for commercial nuclear reactors. It uses heavy water as the neutron moderator and normal "light" water as the coolant. The coolant boils in the reactor, like a boiling water reactor, and drives the power-extraction steam turbines.

<span class="mw-page-title-main">Marcoule Nuclear Site</span> Nuclear facility in France

Marcoule Nuclear Site is a nuclear facility in the Chusclan and Codolet communes, near Bagnols-sur-Cèze in the Gard department of France, which is in the tourist, wine and agricultural Côtes-du-Rhône region. The plant is around 25 km north west of Avignon, on the banks of the Rhone.

<span class="mw-page-title-main">Graphite-moderated reactor</span> Type of nuclear reactor

A graphite-moderated reactor is a nuclear reactor that uses carbon as a neutron moderator, which allows natural uranium to be used as nuclear fuel.

Dragon was an experimental high temperature gas-cooled reactor at Winfrith in Dorset, England, operated by the United Kingdom Atomic Energy Authority. Its purpose was to test fuel and materials for the European High Temperature Reactor programme, and it was built and managed as an Organisation for Economic Co-operation and Development/Nuclear Energy Agency international project. It operated from 1965 to 1976.

<span class="mw-page-title-main">Hinkley Point A nuclear power station</span> Decommissioned nuclear power plant in England

Hinkley Point A nuclear power station is a Magnox nuclear power station undergoing decommissioning. It is located on a 19.4-hectare (48-acre) site in Somerset on the Bristol Channel coast, 5 miles (8 km) west of the River Parrett estuary. The ongoing decommissioning process is being managed by Nuclear Decommissioning Authority licensee Magnox Ltd.

KS 150 is a Gas Cooled Reactor using Heavy Water as a moderator (GCHWR) nuclear reactor design. A single example, A-1, was constructed at the Bohunice Nuclear Power Plant in Jaslovské Bohunice, Czechoslovakia. The power plant suffered a series of accidents, the worst being an accident on February 22, 1977, rated INES-4. Since 1979 the plant has been undergoing decommissioning.

A gas-cooled reactor (GCR) is a nuclear reactor that uses graphite as a neutron moderator and a gas as coolant. Although there are many other types of reactor cooled by gas, the terms GCR and to a lesser extent gas cooled reactor are particularly used to refer to this type of reactor.

In nuclear power technology, online refuelling is a technique for changing the fuel of a nuclear reactor while the reactor is critical. This allows the reactor to continue to generate electricity during routine refuelling, and therefore improve the availability and profitability of the plant.

<span class="mw-page-title-main">Bugey Nuclear Power Plant</span> Nuclear power plant in France

The Bugey Nuclear Power Plant is located in Bugey in the Saint-Vulbas commune (Ain), about 75 km from the Swiss border. The site occupies 100 hectares. It is on the edge of the Rhône River, from where it gets its cooling water, and is about 35 km upstream from Lyon and 72 km from Grenoble. About 1,200 people work at the site.

<span class="mw-page-title-main">Chinon Nuclear Power Plant</span>

The Chinon Nuclear Power Plant is near the town of Avoine in the Indre et Loire département, on the river Loire in central France. The power station has seven reactors, of which three have been closed.

<span class="mw-page-title-main">Integral Molten Salt Reactor</span>

The Integral Molten Salt Reactor (IMSR) is a nuclear power plant design targeted at developing a commercial product for the small modular reactor (SMR) market. It employs molten salt reactor technology which is being developed by the Canadian company Terrestrial Energy. It is based closely on the denatured molten salt reactor (DMSR), a reactor design from Oak Ridge National Laboratory. It also incorporates elements found in the SmAHTR, a later design from the same laboratory. The IMSR belongs to the DMSR class of molten salt reactors (MSR) and hence is a "burner" reactor that employs a liquid fuel rather than a conventional solid fuel; this liquid contains the nuclear fuel and also serves as primary coolant.

<span class="mw-page-title-main">Calder Hall nuclear power station</span> UK nuclear power station

Calder Hall Nuclear Power Station is a former Magnox nuclear power station at Sellafield in Cumbria in North West England. Calder Hall was the world's first full-scale commercial nuclear power station to enter operation, and was the sister plant to the Chapelcross plant in Scotland. Both were commissioned and originally operated by the United Kingdom Atomic Energy Authority. The primary purpose of both plants was to produce weapons-grade plutonium for the UK's nuclear weapons programme, but they also generated electrical power for the National Grid.

References

  1. 1 2 Ten Years of Nuclear Power. IAEA bulletin Vol. 6, no. 3, 1964. Via
  2. Marcoule G1. INSC