The topic of this article may not meet Wikipedia's general notability guideline .(December 2024) |
Organic Moderated Reactor Experiment | |
---|---|
Country |
|
Status | Decommissioned |
Construction began |
|
Commission date |
|
Decommission date |
|
Nuclear power station | |
Reactor supplier | |
Power generation | |
Nameplate capacity |
|
The Organic Moderated Reactor Experiment (OMRE) was a 16 MWt experimental organic nuclear reactor that operated at the National Reactor Testing Station from 1957 to 1963 to explore the use of hydrocarbons as coolant, moderator, and reflector materials in power reactor conditions. [1] Such organic fluids are non-corrosive, do not become highly activated under irradiation, and can operate at low pressure and moderate temperature. These characteristics were considered promising towards the goal of achieving economical commercial nuclear power.
The information provided by OMRE established the credibility of the Organic nuclear reactor concept and led to the commercial demonstration at the Piqua Nuclear Generating Station. More recently, OMRE has been cited as providing key input and motivation for modern designs of such systems, aiming to help improve performance of new and advanced nuclear power plants towards the goals of climate change mitigation. [2] [3]
The OMRE design efforts began in July 1955. [4] It was originally intended to operate for 1 year [5]
The objectives of the OMRE program were to obtain the following experimental information [5] : 9 :
It was neither a pilot plant nor a prototype, but rather a minimum-cost experimental facility designed to investigate the feasibility of the organic concept to power reactors.
The system was designed with diphenyl in mind, with flexibility to try other polyphenyls.
The design criteria stated included:
It used a UO2-stainless steel plate type fuel enriched to 93% with 3 mil thick stainless steel cladding. It did not have a power conversion system.
It had a 14-foot deep pool of hydrocarbons for upper shielding, with a nitrogen cover gas pressurized to 200 psig. The nitrogen was continuously purged from the system to sweep out any hydrogen from decomposition of the coolant-moderator and discharge it out the stack.
Coolant was pumped at 9,200 gpm through an air-blast heat exchanger to dump the core heat to the atmosphere. A steam system and power conversion system were not used to simplify the construction and operation of the reactor experiment.
At high temperature and under irradiation, the hydrocarbons decompose and form longer chains with increasing molecular weight. This gradually degrades the heat transfer and flow characteristics of the fluid. To mitigate this, a coolant-moderator purification ran continuously to remove any hydrocarbons that had been damaged by heat or radiation. This was accomplished with a low-pressure distillation system.
All systems were constructed with carbon steel, except the reactor vessel. All systems had heaters (including induction heating, trace heat, and an oil-fired heater on the air-blast heat exchangers) to bring the system above the melting temperature of the coolant-moderator.
Construction of OMRE began on June 17, 1956, and completed in May 1957. [4] The reactor consists of a concrete pad and corrugated steel cylinder surrounded by compacted earth for radiation shielding.
Clearing, grading, roads, walks, drainage, water supply, power substation, sanitary and process waste systems, fencing, security lighting, guard station, communications system, control and processing building, and reactor foundation excavation were performed in Phase I of the construction by the Idaho Operations Office and the Atomic Energy Commission. [6] Some delays were encountered due to appropriations delays and a steel strike.
The biggest setback was unsatisfactory performance of the control-rod drive mechanism. During testing, it became apparent that the original design would not work, and a new approach was needed.
Process piping was constructed of Schedule 40 carbon steel.
The buildings and utilities were constructed by Wadsworth & Arrington.
The OMRE first achieved criticality on September 17, 1957, and reached full power at the beginning of February, 1958. [1] The reactor operated in two modes: without the purification system, and with the purification system. Seventeen tests were run with the first OMRE core throughout 1958 with reactor power between 0 and 12 MWt.
The first three tests were system check-out tests, covering all major systems. Subsequent tests simulated the conditions expected to be encountered in the Piqua Nuclear Generating Station. Test 4 demonstrated that pyrolitic decomposition rate in external piping was negligible. Tests 5-11 measured the decomposition rate and the effect of radiation damage on coolant-moderator heat-transfer characteristics. Tests 12 and 13 tested the purification system's ability to reduce the concentration of inorganic particulate matter while also reducing the high-boiler concentration from 40% to 8%. [1]
Three fuel element failures occurred during first core operation. Two occurred in experimental low-enriched assemblies with finned aluminum cladding due to inadequate coolant filtration, and the third was caused by improper element seating. [1]
By the end of the first year, the core had generated 958 MW-day of energy and been in operation for 5,600 hours. An extended shutdown followed to replace the core. [1]
Immediately following final OMRE shutdown, the nuclear fuel and reactor vessel internals were removed, and the organic coolant was drained from all the systems.
The facility was eventually decontaminated and decommissioned between October 1977 and September 1979. [7] The process was complicated by the existence of some remaining toxic and flammable Santowax R and xylene, a neutron-activated radioactive vessel emitting 350 R/h, and asbestos insulation. Furthermore, due to insufficient neutron shielding being included in the design, "an extraordinary, unexpected amount of activated rock and soil was removed. [7] : ii
The surface radiation of the excavation and backfill material was brougt to 20 R/hr or less, and the nuclide content of the backfill soil was brought below 0.5 pCi/g.
The decommissioning effort was initially estimated to cost $700,000 and take 2 years, and was completed on time and under budget, for a total cost of $500,000. [7] : 15
A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. When a fissile nucleus like uranium-235 or plutonium-239 absorbs a neutron, it splits into lighter nuclei, releasing energy, gamma radiation, and free neutrons, which can induce further fission in a self-sustaining chain reaction. The process is carefully controlled using control rods and neutron moderators to regulate the number of neutrons that continue the reaction, ensuring the reactor operates safely, although inherent control by means of delayed neutrons also plays an important role in reactor output control. The efficiency of nuclear fuel is much higher than fossil fuels; the 5% enriched uranium used in the newest reactors has an energy density 120,000 times higher than coal.
A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants.
The pebble-bed reactor (PBR) is a design for a graphite-moderated, gas-cooled nuclear reactor. It is a type of very-high-temperature reactor (VHTR), one of the six classes of nuclear reactors in the Generation IV initiative.
A nuclear meltdown is a severe nuclear reactor accident that results in core damage from overheating. The term nuclear meltdown is not officially defined by the International Atomic Energy Agency or by the United States Nuclear Regulatory Commission. It has been defined to mean the accidental melting of the core of a nuclear reactor, however, and is in common usage a reference to the core's either complete or partial collapse.
In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely more susceptible than fast neutrons to propagate a nuclear chain reaction of uranium-235 or other fissile isotope by colliding with their atomic nucleus.
A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons, as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor. Around 20 land based fast reactors have been built, accumulating over 400 reactor years of operation globally. The largest was the Superphénix sodium cooled fast reactor in France that was designed to deliver 1,242 MWe. Fast reactors have been studied since the 1950s, as they provide certain advantages over the existing fleet of water-cooled and water-moderated reactors. These are:
The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron reactors are the most common type of nuclear reactor, and light-water reactors are the most common type of thermal-neutron reactor.
Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency. Such design features tend to rely on the engineering of components such that their predicted behaviour would slow down, rather than accelerate the deterioration of the reactor state; they typically take advantage of natural forces or phenomena such as gravity, buoyancy, pressure differences, conduction or natural heat convection to accomplish safety functions without requiring an active power source. Many older common reactor designs use passive safety systems to a limited extent, rather, relying on active safety systems such as diesel-powered motors. Some newer reactor designs feature more passive systems; the motivation being that they are highly reliable and reduce the cost associated with the installation and maintenance of systems that would otherwise require multiple trains of equipment and redundant safety class power supplies in order to achieve the same level of reliability. However, weak driving forces that power many passive safety features can pose significant challenges to effectiveness of a passive system, particularly in the short term following an accident.
A molten-salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a mixture of molten salt with a fissile material.
The Aircraft Reactor Experiment (ARE) was an experimental nuclear reactor designed to test the feasibility of fluid-fuel, high-temperature, high-power-density reactors for the propulsion of supersonic aircraft. It operated from November 8–12, 1954, at the Oak Ridge National Laboratory (ORNL) with a maximum sustained power of 2.5 megawatts (MW) and generated 96 MW-hours of energy.
The supercritical water reactor (SCWR) is a concept Generation IV reactor, designed as a light water reactor (LWR) that operates at supercritical pressure. The term critical in this context refers to the critical point of water, and should not be confused with the concept of criticality of the nuclear reactor.
A high-temperature gas-cooled reactor (HTGR) is a type of gas-cooled nuclear reactor which uses uranium fuel and graphite moderation to produce very high reactor core output temperatures. All existing HTGR reactors use helium coolant. The reactor core can be either a "prismatic block" or a "pebble-bed" core. China Huaneng Group currently operates HTR-PM, a 250 MW HTGR power plant in Shandong province, China.
The gas-cooled fast reactor (GFR) system is a nuclear reactor design which is currently in development. Classed as a Generation IV reactor, it features a fast-neutron spectrum and closed fuel cycle for efficient conversion of fertile uranium and management of actinides. The reference reactor design is a helium-cooled system operating with an outlet temperature of 850 °C (1,560 °F) using a direct Brayton closed-cycle gas turbine for high thermal efficiency. Several fuel forms are being considered for their potential to operate at very high temperatures and to ensure an excellent retention of fission products: composite ceramic fuel, advanced fuel particles, or ceramic clad elements of actinide compounds. Core configurations are being considered based on pin- or plate-based fuel assemblies or prismatic blocks, which allows for better coolant circulation than traditional fuel assemblies.
The Aircraft Nuclear Propulsion (ANP) program and the preceding Nuclear Energy for the Propulsion of Aircraft (NEPA) project worked to develop a nuclear propulsion system for aircraft. The United States Army Air Forces initiated Project NEPA on May 28, 1946. NEPA operated until May 1951, when the project was transferred to the joint Atomic Energy Commission (AEC)/USAF ANP. The USAF pursued two different systems for nuclear-powered jet engines, the Direct Air Cycle concept, which was developed by General Electric, and Indirect Air Cycle, which was assigned to Pratt & Whitney. The program was intended to develop and test the Convair X-6, but was canceled in 1961 before that aircraft was built. The total cost of the program from 1946 to 1961 was about $1 billion.
The Whiteshell Reactor No. 1, or WR-1, was a Canadian research reactor located at AECL's Whiteshell Laboratories (WNRL) in Manitoba. Originally known as Organic-Cooled Deuterium-Reactor Experiment (OCDRE), it was built to test the concept of a CANDU-type reactor that replaced the heavy water coolant with an oil substance. This had a number of potential advantages in terms of cost and efficiency.
The Advanced Test Reactor (ATR) is a research reactor at the Idaho National Laboratory, located east of Arco, Idaho. This reactor was designed and is used to test nuclear fuels and materials to be used in power plants, naval propulsion, research and advanced reactors. It can operate at a maximum thermal power of 250 MW and has a "Four Leaf Clover" core design that allows for a variety of testing locations. The unique design allows for different neutron flux conditions in various locations. Six of the test locations allow an experiment to be isolated from the primary cooling system, providing its own environment for temperature, pressure, flow and chemistry, replicating the physical environment while accelerating the nuclear conditions.
The Hallam Nuclear Power Facility (HNPF) in Nebraska was a 75 MWe sodium-cooled graphite-moderated nuclear power plant built by Atomics International and operated by Consumers Public Power District of Nebraska. It was built in tandem with and co-located with a conventional coal-fired power station, the Sheldon Power Station. The facility featured a shared turbo generator that could accept steam from either heat source, and a shared control room.
A gas-cooled reactor (GCR) is a nuclear reactor that uses graphite as a neutron moderator and a gas as coolant. Although there are many other types of reactor cooled by gas, the terms GCR and to a lesser extent gas cooled reactor are particularly used to refer to this type of reactor.
The hydrogen-moderated self-regulating nuclear power module (HPM), also referred to as the compact self-regulating transportable reactor (ComStar), is a type of nuclear power reactor using hydride as a neutron moderator. The design is inherently safe, as the fuel and the neutron moderator is uranium hydride UH3, which is reduced at high temperatures (500–800 °C) to uranium and hydrogen. The gaseous hydrogen exits the core, being absorbed by hydrogen absorbing material such as depleted uranium, thus making it less critical. This means that with rising temperature the neutron moderation drops and the nuclear fission reaction in the core is dampened, leading to a lower core temperature. This means as more energy is taken out of the core the moderation rises and the fission process is stoked to produce more heat.
An organic nuclear reactor, or organic cooled reactor (OCR), is a type of nuclear reactor that uses some form of organic fluid, typically a hydrocarbon substance like polychlorinated biphenyl (PCB), for cooling and sometimes as a neutron moderator as well.