Burnup

Last updated

In nuclear power technology, burnup is a measure of how much energy is extracted from a given amount of nuclear fuel [1] . It may be measured as the fraction of fuel atoms that underwent fission in %FIMA (fissions per initial heavy metal atom) [2] or %FIFA (fissions per initial fissile atom) [3] as well as the actual energy released per mass of initial fuel in gigawatt-days/metric ton of heavy metal (GWd/tHM), or similar units. The amount of initial fuel in the denominator is defined as all uranium, plutonium, and thorium isotopes, not including alloying or other chemical compounds or mixtures in the fuel charge [1] .

Contents

Measures of burnup

Expressed as a percentage: if 5% of the initial heavy metal atoms have undergone fission, the burnup is 5%FIMA. If these 5% were the total of 235U that were in the fuel at the beginning, the burnup is 100%FIFA (as 235U is fissile and the other 95% heavy metals like 238U are not). In reactor operations, this percentage is difficult to measure, so the alternative definition is preferred. This can be computed by multiplying the thermal power of the plant by the time of operation and dividing by the mass of the initial fuel loading. For example, if a 3000 MW thermal (equivalent to 1000 MW electric at 33.333% efficiency, which is typical of US LWRs) plant uses 24 tonnes of enriched uranium (tU) and operates at full power for 1 year, the average burnup of the fuel is (3000 MW·365 d)/24 metric tonnes = 45.63 GWd/t, or 45,625 MWd/tHM (where HM stands for heavy metal, meaning actinides like thorium, uranium, plutonium, etc.).

Converting between percent and energy/mass requires knowledge of κ, the thermal energy released per fission event. A typical value is 193.7  MeV (3.1×10−11  J ) of thermal energy per fission (see Nuclear fission). With this value, the maximum burnup of 100%FIMA, which includes fissioning not just fissile content but also the other fissionable nuclides, is equivalent to about 909 GWd/t. Nuclear engineers often use this to roughly approximate 10% burnup as just less than 100 GWd/t.

The actual fuel may be any actinide that can support a chain reaction (meaning it is fissile), including uranium, plutonium, and more exotic transuranic fuels. This fuel content is often referred to as the heavy metal to distinguish it from other metals present in the fuel, such as those used for cladding. The heavy metal is typically present as either metal or oxide, but other compounds such as carbides or other salts are possible.

History

Generation II reactors were typically designed to achieve about 40 GWd/tU. With newer fuel technology, and particularly the use of nuclear poisons, these same reactors are now capable of achieving up to 60 GWd/tU. After so many fissions have occurred, the build-up of fission products poisons the chain reaction and the reactor must be shut down and refueled.

Some more-advanced light-water reactor designs are expected to achieve over 90 GWd/t of higher-enriched fuel. [4]

Fast reactors are more immune to fission-product poisoning and can inherently reach higher burnups in one cycle. In 1985, the EBR-II reactor at Argonne National Laboratory took metallic fuel up to 19.9% burnup, or just under 200 GWd/t. [5]

The Deep Burn Modular Helium Reactor (DB-MHR) might reach 500 GWd/t of transuranic elements. [6]

In a power station, high fuel burnup is desirable for:

It is also desirable that burnup should be as uniform as possible both within individual fuel elements and from one element to another within a fuel charge. In reactors with online refuelling, fuel elements can be repositioned during operation to help achieve this. In reactors without this facility, fine positioning of control rods to balance reactivity within the core, and repositioning of remaining fuel during shutdowns in which only part of the fuel charge is replaced may be used.

On the other hand, there are signs that increasing burnup above 50 or 60 GWd/tU leads to significant engineering challenges [7] and that it does not necessarily lead to economic benefits. Higher-burnup fuels require higher initial enrichment to sustain reactivity. Since the amount of separative work units (SWUs) is not a linear function of enrichment, it is more expensive to achieve higher enrichments. There are also operational aspects of high burnup fuels [8] that are associated especially with reliability of such fuel. The main concerns associated with high burnup fuels are:

Fuel requirements

In once-through nuclear fuel cycles such as are currently in use in much of the world, used fuel elements are disposed of whole as high level nuclear waste, and the remaining uranium and plutonium content is lost. Higher burnup allows more of the fissile 235U and of the plutonium bred from the 238U to be utilised, reducing the uranium requirements of the fuel cycle.

Waste

In once-through nuclear fuel cycles, higher burnup reduces the number of elements that need to be buried. However, short-term heat emission, one deep geological repository limiting factor, is predominantly from medium-lived fission products, particularly 137Cs (30.08 year half life) and 90Sr (28.9 year half life). As there are proportionately more of these in high-burnup fuel, the heat generated by the spent fuel is roughly constant for a given amount of energy generated.

Similarly, in fuel cycles with nuclear reprocessing, the amount of high-level waste for a given amount of energy generated is not closely related to burnup. High-burnup fuel generates a smaller volume of fuel for reprocessing, but with a higher specific activity.

Unprocessed used fuel from current light-water reactors consists of 5% fission products and 95% actinides (most of it uranium), and is dangerously radiotoxic, requiring special custody, for 300,000 years. Most of the long-term radiotoxic elements are transuranic, and therefore could be recycled as fuel. 70% of fission products are either stable or have half lives less than one year. Another six percent (129I and 99Tc) can be transmuted to elements with extremely short half lives (130I: 12.36 hours; 100Tc: 15.46 seconds). 93Zr, having a very long half life, constitutes 5% of fission products, but can be alloyed with uranium and transuranics during fuel recycling, or used in zircalloy cladding, where its radioactivity is irrelevant. The remaining 20% of fission products, or 1% of unprocessed fuel, for which the longest-lived isotopes are 137Cs and 90Sr, require special custody for only 300 years. [9] Therefore, the mass of material needing special custody is 1% of the mass of unprocessed used fuel. In the case of 137
Cs
or 90
Sr
this "special custody" could also take the form of use for food irradiation or as fuel in a radioisotope thermoelectric generator. As both the native elements strontium and caesium and their oxides—chemical forms in which they can be found in oxide or metal fuel—form soluble hydroxides upon reaction with water, they can be extracted from spent fuel relatively easily and precipitated into a solid form for use or disposal in a further step if desired. If tritium has not been removed from the fuel in a step prior to this aqueous extraction, the water used in this process will be contaminated, requiring expensive isotope separation or allowing the tritium to decay to safe levels before the water can be released into the biosphere.

Proliferation

Burnup is one of the key factors determining the isotopic composition of spent nuclear fuel, the others being its initial composition and the neutron spectrum of the reactor. Very low fuel burnup is essential for the production of weapons-grade plutonium for nuclear weapons, in order to produce plutonium that is predominantly 239Pu with the smallest possible proportion of 240Pu and 242Pu.

Plutonium and other transuranic isotopes are produced from uranium by neutron absorption during reactor operation. While it is possible in principle to remove plutonium from used fuel and divert it to weapons usage, in practice there are formidable obstacles to doing so. First, fission products must be removed. Second, plutonium must be separated from other actinides. Third, fissionable isotopes of plutonium must be separated from non-fissionable isotopes, which is more difficult than separating fissionable from non-fissionable isotopes of uranium, not least because the mass difference is one atomic unit instead of three. All processes require operation on strongly radioactive materials. Since there are many simpler ways to make nuclear weapons, nobody has constructed weapons from used civilian electric power reactor fuel, and it is likely that nobody ever will do so. Furthermore, most plutonium produced during operation is fissioned. To the extent that fuel is reprocessed on-site, as proposed for the Integral Fast Reactor, opportunities for diversion are further limited. Therefore, production of plutonium during civilian electric power reactor operation is not a significant problem.

Cost

One 2003 MIT graduate student thesis concludes that "the fuel cycle cost associated with a burnup level of 100 GWd/tHM is higher than for a burnup of 50 GWd/tHM. In addition, expenses will be required for the development of fuels capable of sustaining such high levels of irradiation. Under current conditions, the benefits of high burnup (lower spent fuel and plutonium discharge rates, degraded plutonium isotopics) are not rewarded. Hence there is no incentive for nuclear power plant operators to invest in high burnup fuels." [10]

A study sponsored by the Nuclear Energy University Programs investigated the economic and technical feasibility, in the longer term, of higher burnup. [11]

Related Research Articles

<span class="mw-page-title-main">Nuclear fuel cycle</span> Process of manufacturing and using nuclear fuel

The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.

<span class="mw-page-title-main">Nuclear reprocessing</span> Chemical operations that separate fissile material from spent fuel to be recycled as new fuel

Nuclear reprocessing is the chemical separation of fission products and actinides from spent nuclear fuel. Originally, reprocessing was used solely to extract plutonium for producing nuclear weapons. With commercialization of nuclear power, the reprocessed plutonium was recycled back into MOX nuclear fuel for thermal reactors. The reprocessed uranium, also known as the spent fuel material, can in principle also be re-used as fuel, but that is only economical when uranium supply is low and prices are high. Nuclear reprocessing may extend beyond fuel and include the reprocessing of other nuclear reactor material, such as Zircaloy cladding.

Mixed oxide fuel, commonly referred to as MOX fuel, is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enriched uranium fuel used in the light-water reactors that predominate nuclear power generation.

<span class="mw-page-title-main">Breeder reactor</span> Nuclear reactor generating more fissile material than it consumes

A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. These reactors can be fueled with more-commonly available isotopes of uranium and thorium, such as uranium-238 and thorium-232, as opposed to the rare uranium-235 which is used in conventional reactors. These materials are called fertile materials since they can be bred into fuel by these breeder reactors.

<span class="mw-page-title-main">Fast-neutron reactor</span> Nuclear reactor where fast neutrons maintain a fission chain reaction

A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons, as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor. Around 20 land based fast reactors have been built, accumulating over 400 reactor years of operation globally. The largest was the Superphénix sodium cooled fast reactor in France that was designed to deliver 1,242 MWe. Fast reactors have been studied since the 1950s, as they provide certain advantages over the existing fleet of water-cooled and water-moderated reactors. These are:

<span class="mw-page-title-main">Integral fast reactor</span> Nuclear reactor design

The integral fast reactor (IFR), originally the advancedliquid-metal reactor (ALMR), is a design for a nuclear reactor using fast neutrons and no neutron moderator. IFRs can breed more fuel and are distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.

<span class="mw-page-title-main">Nuclear fuel</span> Material fuelling nuclear reactors

Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other nuclear devices to generate energy.

<span class="mw-page-title-main">Plutonium-239</span> Isotope of plutonium

Plutonium-239 is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in thermal spectrum nuclear reactors, along with uranium-235 and uranium-233. Plutonium-239 has a half-life of 24,110 years.

Plutonium (94Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long before being found in nature, the first isotope synthesized being 238Pu in 1940. Twenty-two plutonium radioisotopes have been characterized. The most stable are 244Pu with a half-life of 80.8 million years; 242Pu with a half-life of 373,300 years; and 239Pu with a half-life of 24,110 years; and 240Pu with a half-life of 6,560 years. This element also has eight meta states; all have half-lives of less than one second.

Fluoride volatility is the tendency of highly fluorinated molecules to vaporize at comparatively low temperatures. Heptafluorides, hexafluorides and pentafluorides have much lower boiling points than the lower-valence fluorides. Most difluorides and trifluorides have high boiling points, while most tetrafluorides and monofluorides fall in between. The term "fluoride volatility" is jargon used particularly in the context of separation of radionuclides.

<span class="mw-page-title-main">Thorium fuel cycle</span> Nuclear fuel cycle

The thorium fuel cycle is a nuclear fuel cycle that uses an isotope of thorium, 232
Th
, as the fertile material. In the reactor, 232
Th
is transmuted into the fissile artificial uranium isotope 233
U
which is the nuclear fuel. Unlike natural uranium, natural thorium contains only trace amounts of fissile material, which are insufficient to initiate a nuclear chain reaction. Additional fissile material or another neutron source is necessary to initiate the fuel cycle. In a thorium-fuelled reactor, 232
Th
absorbs neutrons to produce 233
U
. This parallels the process in uranium breeder reactors whereby fertile 238
U
absorbs neutrons to form fissile 239
Pu
. Depending on the design of the reactor and fuel cycle, the generated 233
U
either fissions in situ or is chemically separated from the used nuclear fuel and formed into new nuclear fuel.

<span class="mw-page-title-main">Spent nuclear fuel</span> Nuclear fuel thats been irradiated in a nuclear reactor

Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor. It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and, depending on its point along the nuclear fuel cycle, it will have different isotopic constituents than when it started.

<span class="mw-page-title-main">Weapons-grade nuclear material</span> Nuclear material pure enough to be used for nuclear weapons

Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon and has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nuclear weapons are the most common examples.

Uranium-236 is an isotope of uranium that is neither fissile with thermal neutrons, nor very good fertile material, but is generally considered a nuisance and long-lived radioactive waste. It is found in spent nuclear fuel and in the reprocessed uranium made from spent nuclear fuel.

Reactor-grade plutonium (RGPu) is the isotopic grade of plutonium that is found in spent nuclear fuel after the uranium-235 primary fuel that a nuclear power reactor uses has burnt up. The uranium-238 from which most of the plutonium isotopes derive by neutron capture is found along with the U-235 in the low enriched uranium fuel of civilian reactors.

Hybrid nuclear fusion–fission is a proposed means of generating power by use of a combination of nuclear fusion and fission processes.

Reprocessed uranium (RepU) is the uranium recovered from nuclear reprocessing, as done commercially in France, the UK and Japan and by nuclear weapons states' military plutonium production programs. This uranium makes up the bulk of the material separated during reprocessing.

<span class="mw-page-title-main">Nuclear transmutation</span> Conversion of an atom from one element to another

Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed.

A pressurized heavy-water reactor (PHWR) is a nuclear reactor that uses heavy water (deuterium oxide D2O) as its coolant and neutron moderator. PHWRs frequently use natural uranium as fuel, but sometimes also use very low enriched uranium. The heavy water coolant is kept under pressure to avoid boiling, allowing it to reach higher temperature (mostly) without forming steam bubbles, exactly as for a pressurized water reactor (PWR). While heavy water is very expensive to isolate from ordinary water (often referred to as light water in contrast to heavy water), its low absorption of neutrons greatly increases the neutron economy of the reactor, avoiding the need for enriched fuel. The high cost of the heavy water is offset by the lowered cost of using natural uranium and/or alternative fuel cycles. As of the beginning of 2001, 31 PHWRs were in operation, having a total capacity of 16.5 GW(e), representing roughly 7.76% by number and 4.7% by generating capacity of all current operating reactors. CANDU and IPHWR are the most common type of reactors in the PHWR family.

REMIX-Fuel (REgenerated MIXture of U, Pu oxides) was developed in Russia to simplify the reprocessing process, reuse spent fuel, reduce the consumption of natural uranium and to enable multi-recycling.

References

  1. 1 2 El-Wakil, M.M. (1962). Nuclear Power Engineering. McGraw-Hill. p. 13. ISBN   0070193002.
  2. Luby, C.S.; Schwartz, A.S. (May 3, 1966). "Irradiation Tests of Pyrolytic-Carbon-Coated ThC2 and ThO2 Particles". Proceedings of the Second International Thorium Fuel Cycle Symposium: 495. Retrieved 20 January 2025.
  3. Raepsaet X, Damian F, Lenain R, Lecomte M (2001). "Fuel cycle related parametric study considering long lived actinide production, decay heat and fuel cycle performances (No. IAEA-TECDOC--1210)". www.osti.gov. Retrieved 2020-11-15.
  4. "Advanced Nuclear Power Reactors". Information Papers. World Nuclear Association. July 2008. Archived from the original on 2010-06-15. Retrieved 2008-08-02.
  5. L. C. Walters (September 18, 1998). "Thirty years of fuels and materials information from EBR-II". Journal of Nuclear Materials. 270 (1–2). Elsevier: 39–48. Bibcode:1999JNuM..270...39W. doi:10.1016/S0022-3115(98)00760-0.
  6. "Small Nuclear Power Reactors". Information Papers. World Nuclear Association. July 2008. Archived from the original on 2013-02-12. Retrieved 2008-08-02.
  7. Etienne Parent. Nuclear Fuel Cycles for Mid-Century Deployment, MIT, 2003.
  8. "Fuel Burnup - Definition and Calculations". www.nuclear-power.net. Retrieved 2017-09-19.
  9. Janne Wallenius (2007). "Återanvändning av långlivat avfall och sluten bränslecykel möjlig i nya reaktortyper" (PDF). Nucleus. p. 15. Archived from the original (PDF) on 2014-05-19.
  10. Etienne Parent (2003). "Nuclear Fuel Cycles for Mid-Century Deployment" (PDF). MIT. p. 81. Archived from the original (PDF) on 2009-02-25.
  11. Ehud Greenspan; et al. (2012). "Maximum Fuel Utilization in Fast Reactors without Chemical Reprocessing" (PDF). UC Berkeley.