A reversed-field pinch (RFP) is a device used to produce and contain near-thermonuclear plasmas. It is a toroidal pinch which uses a unique magnetic field configuration as a scheme to magnetically confine a plasma, primarily to study magnetic confinement fusion. Its magnetic geometry is somewhat different from that of the more common tokamak. As one moves out radially, the portion of the magnetic field pointing toroidally reverses its direction, giving rise to the term reversed field. This configuration can be sustained with comparatively lower fields than that of a tokamak of similar power density. One of the disadvantages of this configuration is that it tends to be more susceptible to non-linear effects and turbulence. This makes it a useful system for studying non-ideal (resistive) magnetohydrodynamics. RFPs are also used in studying astrophysical plasmas, which share many common features.
The largest Reversed Field Pinch device presently in operation is the RFX (R/a = 2/0.46) in Padua, Italy. Others include the MST (R/a = 1.5/0.5) in the United States, EXTRAP T2R (R/a = 1.24/0.18) in Sweden, RELAX (R/a = 0.51/0.25) in Japan, and KTX (R/a = 1.4/0.4) in China.
Unlike the Tokamak, which has a much larger magnetic field in the toroidal direction than the poloidal direction, an RFP has a comparable field strength in both directions (though the sign of the toroidal field reverses). Moreover, a typical RFP has a field strength approximately one half to one tenth that of a comparable Tokamak. The RFP also relies on driving current in the plasma to reinforce the field from the magnets through the dynamo effect.
The reversed-field pinch works towards a state of minimum energy.
The magnetic field lines coil loosely around a center torus. They coil outwards. Near the plasma edge, the toroidal magnetic field reverses and the field lines coil in the reverse direction.
Internal fields are bigger than the fields at the magnets.
The RFP has many features that make it a promising configuration for a potential fusion reactor.
Due to the lower overall fields, an RFP reactor might not need superconducting magnets. This is a large advantage over tokamaks since superconducting magnets are delicate and expensive and so must be shielded from the neutron rich fusion environment. RFPs are susceptible to surface instabilities and so require a close fitting shell. Some experiments (such as the Madison Symmetric Torus) use their close fitting shell as a magnetic coil by driving current through the shell itself. This is attractive from a reactor standpoint since a solid copper shell (for example) would be fairly robust against high energy neutrons, compared with superconducting magnets. There is also no established beta limit for RFPs. There exists a possibility that a reversed field pinch could achieve ignition solely with ohmic power (by driving current through the plasma and generating heat from electrical resistance, rather than through electron cyclotron resonance heating), which would be much simpler than tokamak designs, though it could not be operated in steady state.
This section needs expansion. You can help by adding to it. (January 2007) |
Typically RFPs require a large amount of current to be driven, and although promising experiments are underway, there is no established method of replacing ohmically driven current, which is fundamentally limited by the machine parameters. RFPs are also prone to tearing modes which lead to overlapping magnetic islands and therefore rapid transport from the core of the plasma to the edge. These problems are areas of active research in the RFP community.
The plasma confinement in the best RFP's is only about 1% as good as in the best tokamaks. One reason for this is that all existing RFPs are relatively small. MST was larger than any previous RFP device, and thus it tested this important size issue.. The RFP is believed to require a shell with high electrical conductivity very close to the boundary of the plasma. This requirement is an unfortunate complication in a reactor. The Madison Symmetric Torus was designed to test this assumption and to learn how good the conductor must be and how close to the plasma it must be placed. In RFX, the thick shell was replaced with an active system of 192 coils, which cover the entire torus with their saddle shape, and response to the magnetic push of the plasma. Active control of plasma modes is also possible with this system.
The Reversed Field Pinch is also interesting from a physics standpoint. RFP dynamics are highly turbulent. RFPs also exhibit a strong plasma dynamo, similar to many astrophysical bodies. Basic plasma science is another important aspect of Reversed Field Pinch research.
A stellarator is a plasma device that relies primarily on external magnets to confine a plasma. Scientists researching magnetic confinement fusion aim to use stellarator devices as a vessel for nuclear fusion reactions. The name refers to the possibility of harnessing the power source of the stars, such as the Sun. It is one of the earliest fusion power devices, along with the z-pinch and magnetic mirror.
A tokamak is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. As of 2021, it is the leading candidate for a practical fusion reactor.
The T-15 is a Russian nuclear fusion research reactor located at the Kurchatov Institute, which is based on the (Soviet-invented) tokamak design. It was the first industrial prototype fusion reactor to use superconducting magnets to control the plasma. These enormous superconducting magnets confined the plasma the reactor produced, but failed to sustain it for more than just a few seconds. Despite not being immediately applicable, this new technological advancement proved to the USSR that they were on the right path. In the original shape, a toroidal chamber design, it had a major radius of 2.43 m and minor radius 0.7 m.
Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with inertial confinement fusion. The magnetic approach began in the 1940s and absorbed the majority of subsequent development.
A field-reversed configuration (FRC) is a type of plasma device studied as a means of producing nuclear fusion. It confines a plasma on closed magnetic field lines without a central penetration. In an FRC, the plasma has the form of a self-stable torus, similar to a smoke ring.
A spheromak is an arrangement of plasma formed into a toroidal shape similar to a smoke ring. The spheromak contains large internal electric currents and their associated magnetic fields arranged so the magnetohydrodynamic forces within the spheromak are nearly balanced, resulting in long-lived (microsecond) confinement times without external fields. Spheromaks belong to a type of plasma configuration referred to as the compact toroids.
The Madison Symmetric Torus (MST) is a reversed field pinch (RFP) physics experiment with applications to both fusion energy research and astrophysical plasmas.
Alcator C-Mod was a tokamak that operated between 1991 and 2016 at the Massachusetts Institute of Technology (MIT) Plasma Science and Fusion Center (PSFC). Notable for its high toroidal magnetic field, Alcator C-Mod holds the world record for volume averaged plasma pressure in a magnetically confined fusion device. Until its shutdown in 2016, it was one of the major fusion research facilities in the United States.
The National Spherical Torus Experiment (NSTX) is a magnetic fusion device based on the spherical tokamak concept. It was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle. It entered service in 1999. In 2012 it was shut down as part of an upgrade program and became NSTX-U, for Upgrade.
The Enormous Toroidal Plasma Device (ETPD) is an experimental physics device housed at the Basic Plasma Science Facility at University of California, Los Angeles (UCLA). It previously operated as the Electric Tokamak (ET) between 1999 and 2006 and was noted for being the world's largest tokamak before being decommissioned due to the lack of support and funding. The machine was renamed to ETPD in 2009. At present, the machine is undergoing upgrades to be re-purposed into a general laboratory for experimental plasma physics research.
The Tokamak à configuration variable is a Swiss research fusion reactor of the École Polytechnique Fédérale de Lausanne (EPFL). As the largest experimental facility of the Swiss Plasma Center, the TCV Tokamak explores the physics of nuclear fusion by magnetic confinement. Its distinguishing feature over other tokamaks is that its torus section is three times higher than wide. This allows studying several shapes of plasmas, which is particularly relevant since the shape of the plasma has links to the performance of the reactor. This asset has earned its choice as one of the three national machines in Europe involved in the design of the international reactor ITER, as well as in the development of ITER’s successor DEMO, a prototype of a commercial reactor. The TCV was set up in November 1992.
A Riggatron is a magnetic confinement fusion reactor design created by Robert W. Bussard in the late 1970s. It is a tokamak on the basis of its magnetic geometry, but some unconventional engineering choices were made. In particular, Riggatron used copper magnets positioned inside the lithium blanket, which was hoped to lead to much lower construction costs. Originally referred to as the Demountable Tokamak Fusion Core (DTFC), the name was later changed to refer to the Riggs Bank, which funded development along with Bob Guccione, publisher of the adult magazine Penthouse.
WEST, Tungsten Environment in Steady-state Tokamak, is a French tokamak that originally began operating as Tore Supra after the discontinuation of TFR and of Petula. The original name came from the words torus and superconductor, as Tore Supra was for a long time the only tokamak of this size with superconducting toroidal magnets, allowing the creation of a strong permanent toroidal magnetic field. After a major upgrade to install tungsten walls and a divertor, the tokamak was renamed WEST.
The Helically Symmetric Experiment, is an experimental plasma confinement device at the University of Wisconsin–Madison, with design principles that are intended to be incorporated into a fusion reactor. The HSX is a modular coil stellarator which is a toroid-shaped pressure vessel with external electromagnets which generate a magnetic field for the purpose of containing a plasma. It began operation in 1999.
Trisops was an experimental machine for the study of magnetic confinement of plasmas with the ultimate goal of producing fusion power. The configuration was a variation of a compact toroid, a toroidal (doughnut-shaped) structure of plasma and magnetic fields with no coils penetrating the center. It lost funding in its original form in 1978.
Compact toroids are a class of toroidal plasma configurations that are self-stable, and whose configuration does not require magnet coils running through the center of the toroid. They are studied primarily in the field of fusion energy, where the lack of complex magnets and a simple geometry may allow the construction of dramatically simpler and less expensive fusion reactors.
A spherical tokamak is a type of fusion power device based on the tokamak principle. It is notable for its very narrow profile, or aspect ratio. A traditional tokamak has a toroidal confinement area that gives it an overall shape similar to a donut, complete with a large hole in the middle. The spherical tokamak reduces the size of the hole as much as possible, resulting in a plasma shape that is almost spherical, often compared with a cored apple. The spherical tokamak is sometimes referred to as a spherical torus and often shortened to ST.
The Compact Toroidal Hybrid (CTH) is an experimental device at Auburn University that uses magnetic fields to confine high-temperature plasmas. CTH is a torsatron type of stellarator with an external, continuously wound helical coil that generates the bulk of the magnetic field for containing a plasma.