The Enormous Toroidal Plasma Device (ETPD) is an experimental physics device housed at the Basic Plasma Science Facility at University of California, Los Angeles (UCLA). It previously operated as the Electric Tokamak (ET) between 1999 and 2006 and was noted for being the world's largest tokamak [1] before being decommissioned due to the lack of support and funding. [2] The machine was renamed to ETPD in 2009. At present, the machine is undergoing upgrades to be re-purposed into a general laboratory for experimental plasma physics research.
Device type | Tokamak |
---|---|
Location | Los Angeles, California, US |
Affiliation | UCLA |
Technical specifications | |
Major radius | 5 m (16 ft) |
Minor radius | 1 m (3 ft 3 in) |
Plasma volume | 188 m3 |
Magnetic field | 0.25 T (2,500 G) |
Heating power | 2 MW |
Plasma current | 30–45 kA |
History | |
Year(s) of operation | 1999–2006 |
The Electric Tokamak (ET) was the last of a series of small tokamak machines built in 1998 under the direction of principal investigator and designer, Robert Taylor, a UCLA professor. The machine was designed to be a low field (0.25 T) magnetic confinement fusion device with a large aspect ratio. It is composed of 16 vacuum chambers made of 1-inch thick steel, with a major radius of 5 meters and a minor radius of 1 meter. The ET was the largest tokamak ever built at its time, with a vacuum vessel slightly bigger than that of the Joint European Torus.
The first plasma was achieved in January 1999. The ET is capable of producing a plasma current of 45 kiloamperes and can produce a core electron plasma temperature of 300 eV. [3] [4]
Four sets of independent coils are necessary for OH (ohmic heating) current drive, vertical equilibrium field, plasma elongation and plasma shaping (D or reverse-D). The OH system provides 10 V·s using a 10 kA power supply. Up to 0.1 T of vertical field can be applied for horizontal control and this is more than sufficient for all plasma configurations, including high beta. An additional set of coils provide a small horizontal field to correct for error field and to stabilize the plasma vertically. All the coils are located outside the vessel and are constructed out of aluminium.
A Rogowski probe outside the vessel and sets of Hall probes inside the vessel are used to monitor plasma current, position and shaping and are used in the control feedback loop. The poloidal system was designed using an in-house equilibrium code as well as a variety of other codes in order to cross-check computations and to assess the stability of the resulting plasma.
Like most tokamaks, the machine uses a combination of RF heating and neutral beam injection to drive and shape the plasma.
In 2006, the ET had run out of funding and was decommissioned following the retirement of Taylor. Factors leading to loss of funding are attributed to the lack of extensive plasma diagnostics, its large size, and its place in the politics of fusion. When it was operating, the ET was funded mostly by the Department of Energy (DOE). [2]
In 2009, the Electric Tokamak (ET) was renamed to the Enormous Toroidal Plasma Device (ETPD) and was re-purposed for basic plasma research. A lanthanum hexaboride (LaB6) plasma source was developed for the ETPD [5] (similar to the one used in the Large Plasma Device), and is capable of producing a long column of magnetized plasma (~100 m) that winds itself multiple times along the toroidal axis of the machine. The plasma column was shown to be current-free and terminates on the neutral gas within the chamber without touching the machine walls. [6]
The typical operational parameters of the ETPD [7] are:
The ETPD is currently in the process of being upgraded (i.e. larger sources, [8] better diagnostic capabilities) to support a wide range of plasma physics experiments.
A stellarator is a plasma device that relies primarily on external magnets to confine a plasma. Scientists researching magnetic confinement fusion aim to use stellarator devices as a vessel for nuclear fusion reactions. The name refers to the possibility of harnessing the power source of the stars, such as the Sun. It is one of the earliest fusion power devices, along with the z-pinch and magnetic mirror.
A tokamak is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. As of 2016, it was the leading candidate for a practical fusion reactor. The word "tokamak" is derived from a Russian acronym meaning "toroidal chamber with magnetic coils".
Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2024, no device has reached net power, although net positive reactions have been achieved.
A reversed-field pinch (RFP) is a device used to produce and contain near-thermonuclear plasmas. It is a toroidal pinch which uses a unique magnetic field configuration as a scheme to magnetically confine a plasma, primarily to study magnetic confinement fusion. Its magnetic geometry is somewhat different from that of the more common tokamak. As one moves out radially, the portion of the magnetic field pointing toroidally reverses its direction, giving rise to the term reversed field. This configuration can be sustained with comparatively lower fields than that of a tokamak of similar power density. One of the disadvantages of this configuration is that it tends to be more susceptible to non-linear effects and turbulence. This makes it a useful system for studying non-ideal (resistive) magnetohydrodynamics. RFPs are also used in studying astrophysical plasmas, which share many common features.
The T-15 is a Russian nuclear fusion research reactor located at the Kurchatov Institute, which is based on the (Soviet-invented) tokamak design. It was the first industrial prototype fusion reactor to use superconducting magnets to control the plasma. These enormous superconducting magnets confined the plasma the reactor produced, but failed to sustain it for more than just a few seconds. Despite not being immediately applicable, this new technological advancement proved to the USSR that they were on the right path. In the original shape, a toroidal chamber design, it had a major radius of 2.43 m and minor radius 0.7 m.
Magnetic confinement fusion (MCF) is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of controlled fusion research, along with inertial confinement fusion.
A field-reversed configuration (FRC) is a type of plasma device studied as a means of producing nuclear fusion. It confines a plasma on closed magnetic field lines without a central penetration. In an FRC, the plasma has the form of a self-stable torus, similar to a smoke ring.
The Large Plasma Device is an experimental physics device located at UCLA. It is designed as a general purpose laboratory for experimental plasma physics research. The device began operation in 1991 and was upgraded in 2001 to its current version. The modern LAPD is operated as the primary device for a national collaborative research facility, the Basic Plasma Science Facility, which is supported by the US Department of Energy, Fusion Energy Sciences and the National Science Foundation. Half of the operation time of the device is available to scientists at other institutions and facilities who can compete for time through a yearly solicitation.
A spheromak is an arrangement of plasma formed into a toroidal shape similar to a smoke ring. The spheromak contains large internal electric currents and their associated magnetic fields arranged so the magnetohydrodynamic forces within the spheromak are nearly balanced, resulting in long-lived (microsecond) confinement times without external fields. Spheromaks belong to a type of plasma configuration referred to as the compact toroids. A spheromak can be made and sustained using magnetic flux injection, leading to a dynomak.
The Small Tight Aspect Ratio Tokamak, or START was a nuclear fusion experiment that used magnetic confinement to hold plasma. START was the first full-sized machine to use the spherical tokamak design, which aimed to greatly reduce the aspect ratio of the traditional tokamak design.
DIII-D is a tokamak that has been operated since the late 1980s by General Atomics (GA) in San Diego, USA, for the U.S. Department of Energy. The DIII-D National Fusion Facility is part of the ongoing effort to achieve magnetically confined fusion. The mission of the DIII-D Research Program is to establish the scientific basis for the optimization of the tokamak approach to fusion energy production.
The National Spherical Torus Experiment (NSTX) is a magnetic fusion device based on the spherical tokamak concept. It was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle. It entered service in 1999. In 2012 it was shut down as part of an upgrade program and became NSTX-U, for Upgrade.
The National Compact Stellarator Experiment, NCSX in short, was a magnetic fusion energy experiment based on the stellarator design being constructed at the Princeton Plasma Physics Laboratory (PPPL).
The Helically Symmetric Experiment, is an experimental plasma confinement device at the University of Wisconsin–Madison, with design principles that are intended to be incorporated into a fusion reactor. The HSX is a modular coil stellarator which is a toroid-shaped pressure vessel with external electromagnets which generate a magnetic field for the purpose of containing a plasma. It began operation in 1999.
A spherical tokamak is a type of fusion power device based on the tokamak principle. It is notable for its very narrow profile, or aspect ratio. A traditional tokamak has a toroidal confinement area that gives it an overall shape similar to a donut, complete with a large hole in the middle. The spherical tokamak reduces the size of the hole as much as possible, resulting in a plasma shape that is almost spherical, often compared to a cored apple. The spherical tokamak is sometimes referred to as a spherical torus and often shortened to ST.
A plasma railgun is a linear accelerator which, like a projectile railgun, uses two long parallel electrodes to accelerate a "sliding short" armature. However, in a plasma railgun, the armature and ejected projectile consists of plasma, or hot, ionized, gas-like particles, instead of a solid slug of material. Scientific plasma railguns are typically operated in vacuum and not at air pressure. They are of value because they produce muzzle velocities of up to several hundreds of kilometers per second. Because of this, these devices have applications in magnetic confinement fusion (MCF), magneto-inertial fusion (MIF), high energy density physics research (HEDP), laboratory astrophysics, and as a plasma propulsion engine for spacecraft.
The Hybrid Illinois Device for Research and Applications (HIDRA) is a medium-sized toroidal magnetic fusion device housed in the Nuclear Radiation Laboratory and operated by the Center for Plasma-Material Interactions (CPMI) within the Department of Nuclear, Plasma and Radiological Engineering at the University of Illinois at Urbana–Champaign, United States. HIDRA had its first plasma at the end of April 2016 and started experimental campaigns by December of that year. HIDRA is the former WEGA classical stellarator that was operated at the Max Planck Institute for Plasma Physics in Greifswald Germany from 2001 to 2013.
The Compact Toroidal Hybrid (CTH) is an experimental device at Auburn University that uses magnetic fields to confine high-temperature plasmas. CTH is a torsatron type of stellarator with an external, continuously wound helical coil that generates the bulk of the magnetic field for containing a plasma.
The Tokamak Physics Experiment (TPX) was a plasma physics experiment that was designed but not built. It was designed by an inter-organizational team in the USA led by Princeton Plasma Physics Laboratory. The experiment was designed to test theories about how Tokamaks would behave in a high-performance, steady-state regime.
{{cite journal}}
: Cite journal requires |journal=
(help){{cite journal}}
: Cite journal requires |journal=
(help)