Device type | Tokamak |
---|---|
Location | Cambridge, Massachusetts, US |
Affiliation | MIT Plasma Science and Fusion Center |
Technical specifications | |
Major radius | 0.68 m (2 ft 3 in) |
Minor radius | 0.22 m (8.7 in) |
Plasma volume | 1 m3 |
Magnetic field | 3–8 T (30,000–80,000 G) (toroidal) |
Plasma current | 0.4–2.0 MA (typical) |
History | |
Year(s) of operation | 1991–2016 |
Preceded by | Alcator C |
Alcator C-Mod was a tokamak (a type of magnetically confined fusion device) that operated between 1991 and 2016 at the Massachusetts Institute of Technology (MIT) Plasma Science and Fusion Center (PSFC). Notable for its high toroidal magnetic field (of up to 8 Tesla), Alcator C-Mod holds the world record for volume averaged plasma pressure in a magnetically confined fusion device. [1] Until its shutdown in 2016, it was one of the major fusion research facilities in the United States.
Alcator C-Mod was the third of the Alcator (Alto Campo Toro, High Field Torus) tokamak series, following Alcator A (1973–1979) and Alcator C (1978–1987). It was the largest fusion reactor operated by any university and was an integral part of the larger Plasma Science and Fusion Center.
In the late 1960s, magnetic-confinement fusion research at MIT was carried out on small-scale "table-top" experiments at the Research Laboratory for Electronics and the Francis Bitter Magnet Laboratory. At this time, the Soviet Union was developing a tokamak (though this was unknown in the United States), and Princeton Plasma Physics Laboratory (PPPL) was developing the stellarator.
Bruno Coppi was working at the Institute for Advanced Study in Princeton, New Jersey and was interested in the basic plasma physics problem of plasma resistivity at high values of the streaming parameter, as well as the behavior of magnetically confined plasmas at very high field strengths (≥ 10 T). In 1968, Coppi attended the third IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research at Novosibirsk. At this conference, Soviet scientists announced that they had achieved electron temperatures of over 1000 eV in a tokamak device (T-3).
This same year, Coppi was named a full professor in the MIT Department of Physics. He immediately collaborated with engineers at the Francis Bitter Magnet Laboratory, led by Bruce Montgomery, to design a compact (0.54 m major radius), high-field (10 T on axis) tokamak which he titled Alcator. The name is an acronym of the Italian Alto Campo Toro, which means "high-field torus". With the later construction of Alcator C and then Alcator C-Mod, the original Alcator was retroactively renamed to Alcator A.
Alcator was approved by the Atomic Energy Commission (AEC) in 1970 and was first operated in 1972. Performance problems (poor-quality vacuum and arcing in toroidal field magnets) led to the rebuilding of the machine in 1973–1974 with a new vacuum vessel, with scientific results beginning in 1974. Alcator A was powered by the Bitter Laboratory's 32 MW DC motor-generators and was the first tokamak in the world to use an air-core transformer for ohmic current drive and heating.
The success of Alcator A led to the conceptual design, beginning in 1975, of a larger machine called Alcator B. However, the motor-generators used for Alcator A were not powerful enough to drive the new machine, necessitating the purchase and installation of new power supplies, a cost that the Energy Research and Development Administration (ERDA) was unwilling to fund. ERDA was, however, enthusiastic about building another Alcator, and a solution was found: a 225 MVA alternator was donated to MIT by Con Ed from a plant on the East River in New York City. The conceptual design was changed to accommodate the different power supply, and the project was renamed to Alcator C.
Alcator C was officially authorized in 1976. This same year, the Plasma Fusion Center (now the Plasma Science and Fusion Center) was spun off from the Francis Bitter Magnet Laboratory. Construction of Alcator C proceeded rapidly and initial tests were conducted at the end of 1977. The alternator arrived from Con Ed in early 1978 (its transport was complicated by the blizzard of 1978) and was incorporated into the system in the summer of 1978. Scientific operations began in September of that year.
Alcator C was a larger machine (R0 = 0.64 m) and operated at a higher field (B0 ≤ 13 T) than Alcator A. With the addition of 4 MW of lower hybrid heating in 1982, electron temperatures over 3.0 keV were reached. While Alcator C did not originally have the energy confinement time expected, due to the onset of ion temperature gradient turbulence at high values of , pellet fueling was used to produce peaked density profiles and values of the nτ product of over 0.8 × 1020 s·m−3 were achieved in 1983.
Several ideas for new devices and upgrades at the PSFC were never funded. From 1978 to 1980, a design activity was carried out for Alcator D, a larger version of Alcator C that would allow for more heating power, and possibly even deuterium–tritium (D–T) operation. This design was never formally proposed to the Department of Energy (DOE), but continued to evolve under Coppi's direction, eventually becoming the Italian–Russian IGNITOR device planned for construction at TRINITY near Troitsk, Russia.
In 1982, another more ambitious device called Alcator DCT was conceived. This machine would have superconducting coils producing 7 T on axis. 4 MW of lower hybrid current drive would drive a steady-state plasma with 1.4 MA plasma current. As this design was similar to the French Tore Supra, a joint French–American workshop was held in Cadarache in 1983 to compare the two designs and exchange ideas. Alcator DCT was formally proposed to the DOE in late 1983 but was not funded.
At that time, the budget for magnetic fusion energy research in the United States had been increasing year-over-year, reaching a peak of $468.4 million in fiscal 1984. That year, the PSFC was notified that for a time, budgets would be falling, and DOE policy would be to only fund upgrades to existing devices, not new machines. Thus, design work was begun on a copper-coil machine which would reuse some of the power supplies from Alcator C, allowing the team to pitch it as a "modification" to Alcator C. The conceptual design was completed and Alcator C-Mod was formally proposed to DOE in late 1985. The project was approved and construction was authorized in 1986.
Alcator C-Mod uses ion cyclotron radio frequency (ICRF) heating as its primary auxiliary heating source. The source frequency is 80 MHz and the standard minority heating scenarios are D(H) for 4.4–6.9 T and D(3He) for high field operation (7.3–8.0 T). [2] A minority species (Hydrogen or He3) is indicated, and ICRH scenarios use a two-component plasma.
Absorption efficiency varies with the minority concentration. It is also possible to transition between minority and mode conversion (MC) heating by varying the minority species concentration. The relative H fraction can be scanned from roughly 2–30% via gas puffing and measured using passive charge exchange. [2] The relative He3 fraction concentration can also be scanned from roughly 2–30% via gas puffing. Phase contrast imaging (PCI) can be used to measure the mode converted waves directly in the plasma.
Minority heating is the most common scenario used at C-Mod. The ICRF heating system operates at 80 MHz in D(H) plasmas. This frequency corresponds to on-axis minority fundamental cyclotron resonance of protons at 5.3 T and absorbing fast waves by hydrogen minority species in a deuterium plasma. It can be very efficient (typical single pass absorption in C-Mod is 80–90% for minority concentrations of 5–10%). [3] Minority heating at 80 MHz and 7.9 T in a deuterium majority plasma is achieved using the He3 minority resonance (on-axis), but single pass absorption with He3 minority ions in deuterium tends to be much lower than for protons [3] (e.g. the minority heating scenario at 5.3–5.4 T).
Mode conversion of a fast magnetosonic wave to an ion cyclotron wave and ion Bernstein wave in the ion cyclotron range of frequencies (ICRF) can be used to heat electrons. Mode conversion heating is done at C-Mod using the ICRF in D(3He) plasmas. [2]
Lower hybrid current drive (LHCD) (based on Lower hybrid oscillation) is used to supplement the current driven by the Ohmic transformer. The LHCD system is capable of delivering 1.0+ MW of microwave power (planned upgrade to 2 MW or more with addition of a second antenna in 2013[ needs update ]) to the plasma at 4.6 GHz. Power is provided by 250 kW klystron microwave amplifiers manufactured by CPI, Inc. Non-inductive operation for up to 0.5 s pulses at 500 kA was achieved. Lower hybrid waves are launched preferentially in the direction opposite the plasma current (i.e. in the direction of electron travel) and deposit energy on electrons moving at approximately three times the thermal velocity via Landau damping. A major area of LHCD research has been in the area of current drive at the high densities (ne > 1020 m−3) required for a fusion power plant.
Alcator C-Mod was slated to shut down in October 2013. However, the 2014 Congressional omnibus spending bill explicitly specified operation of the experiment, providing $22 million. The experimental operation was restarted in February 2014.
Funding was once again extended for FY 2015, although the omnibus bill that provided the funding explicitly stated that no funding would be provided beyond FY 2016. [4] [5]
In 2016 Alcator C-Mod set a world record for plasma pressure in a magnetically confined fusion device, reaching 2.05 atmospheres – a 15 percent jump over the previous record of 1.77 atmospheres (also held by Alcator C-Mod). This record plasma had a temperature of 35 million degrees C, lasted for 2 seconds, and yielded 600 trillion fusion reactions. [6] The run involved operation with a toroidal magnetic field of 5.7 tesla. It reached this milestone on its final day of operation. [7]
Following completion of operations at the end of September 2016, the facility has been placed into safe shutdown, with no additional experiments planned at this time. There is a wealth of data archived from the more than 20 years of operations, and the experimental and theoretical teams continue to analyze the results and publish them in the scientific literature. [8]
The Alcator C-Mod plasma pressure record of 2.05 atmosphere will likely hold for some time. The only machine currently under construction that is predicted to break this record is the ITER tokamak in France. ITER is not expected to be fully operational until 2032, meaning that Alcator C-Mod's record will hold for 15 years unless another new device is constructed before then. [1]
A tokamak is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. As of 2016, it was the leading candidate for a practical fusion reactor. The word "tokamak" is derived from a Russian acronym meaning "toroidal chamber with magnetic coils".
The stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it. The stability of the system determines if the perturbations will grow, oscillate, or be damped out.
Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2023, no device has reached net power.
The Joint European Torus, or JET, is an operational magnetically confined plasma physics experiment, located at Culham Centre for Fusion Energy in Oxfordshire, UK. Based on a tokamak design, the fusion research facility is a joint European project with a main purpose of opening the way to future nuclear fusion grid energy. At the time of its design JET was larger than any comparable machine.
The Large Helical Device (LHD) is a fusion research device located in Toki, Gifu, Japan. It is operated by the National Institute for Fusion Science, and is the world's second-largest superconducting stellarator, after Wendelstein 7-X. The LHD employs a heliotron magnetic field originally developed in Japan.
The Levitated Dipole Experiment (LDX) was an experiment investigating the generation of fusion power using the concept of a levitated dipole. The device was the first of its kind to test the levitated dipole concept and was funded by the US Department of Energy. The machine was also part of a collaboration between the MIT Plasma Science and Fusion Center and Columbia University, where another (non-levitated) dipole experiment, the Collisionless Terrella Experiment (CTX), was located.
The Madison Symmetric Torus (MST) is a reversed field pinch (RFP) physics experiment with applications to both fusion energy research and astrophysical plasmas.
The Plasma Science and Fusion Center (PSFC) at the Massachusetts Institute of Technology (MIT) is a university research center for the study of plasmas, fusion science and technology.
The KSTAR is a magnetic fusion device at the Korea Institute of Fusion Energy in Daejeon, South Korea. It is intended to study aspects of magnetic fusion energy that will be pertinent to the ITER fusion project as part of that country's contribution to the ITER effort. The project was approved in 1995, but construction was delayed by the East Asian financial crisis, which weakened the South Korean economy considerably; however, the project's construction phase was completed on September 14, 2007. The first plasma was achieved in June 2008.
Neutral-beam injection (NBI) is one method used to heat plasma inside a fusion device consisting in a beam of high-energy neutral particles that can enter the magnetic confinement field. When these neutral particles are ionized by collision with the plasma particles, they are kept in the plasma by the confining magnetic field and can transfer most of their energy by further collisions with the plasma. By tangential injection in the torus, neutral beams also provide momentum to the plasma and current drive, one essential feature for long pulses of burning plasmas. Neutral-beam injection is a flexible and reliable technique, which has been the main heating system on a large variety of fusion devices. To date, all NBI systems were based on positive precursor ion beams. In the 1990s there has been impressive progress in negative ion sources and accelerators with the construction of multi-megawatt negative-ion-based NBI systems at LHD (H0, 180 keV) and JT-60U (D0, 500 keV). The NBI designed for ITER is a substantial challenge (D0, 1 MeV, 40 A) and a prototype is being constructed to optimize its performance in view of the ITER future operations. Other ways to heat plasma for nuclear fusion include RF heating, electron cyclotron resonance heating (ECRH), ion cyclotron resonance heating (ICRH), and lower hybrid resonance heating (LH).
ASDEX Upgrade is a divertor tokamak at the Max-Planck-Institut für Plasmaphysik, Garching that went into operation in 1991. At present, it is Germany's second largest fusion experiment after stellarator Wendelstein 7-X.
The tokamak à configuration variable is an experimental tokamak located at the École Polytechnique Fédérale de Lausanne (EPFL) Swiss Plasma Center (SPC) in Lausanne, Switzerland. As the largest experimental facility of the Swiss Plasma Center, the TCV tokamak explores the physics of magnetic confinement fusion. It distinguishes itself from other tokamaks with its specialized plasma shaping capability, which can produce diverse plasma shapes without requiring hardware modifications.
The Helically Symmetric Experiment, is an experimental plasma confinement device at the University of Wisconsin–Madison, with design principles that are intended to be incorporated into a fusion reactor. The HSX is a modular coil stellarator which is a toroid-shaped pressure vessel with external electromagnets which generate a magnetic field for the purpose of containing a plasma. It began operation in 1999.
Ion cyclotron resonance is a phenomenon related to the movement of ions in a magnetic field. It is used for accelerating ions in a cyclotron, and for measuring the masses of an ionized analyte in mass spectrometry, particularly with Fourier transform ion cyclotron resonance mass spectrometers. It can also be used to follow the kinetics of chemical reactions in a dilute gas mixture, provided these involve charged species.
The ARC fusion reactor is a design for a compact fusion reactor developed by the Massachusetts Institute of Technology (MIT) Plasma Science and Fusion Center (PSFC). ARC aims to achieve an engineering breakeven of three. The key technical innovation is to use high-temperature superconducting magnets in place of ITER's low-temperature superconducting magnets. The proposed device would be about half the diameter of the ITER reactor and cheaper to build.
High-confinement mode, or H-mode, is an operating regime possible in toroidal magnetic confinement fusion devices – mostly tokamaks, but also in stellarators. In this regime the plasma has a higher energy confinement time.
Miklos Porkolab (born March 24, 1939) is a Hungarian-American physicist specializing in plasma physics.
The Compact Toroidal Hybrid (CTH) is an experimental device at Auburn University that uses magnetic fields to confine high-temperature plasmas. CTH is a torsatron type of stellarator with an external, continuously wound helical coil that generates the bulk of the magnetic field for containing a plasma.
The Tokamak Physics Experiment (TPX) was a plasma physics experiment that was designed but not built. It was designed by an inter-organizational team in the USA led by Princeton Plasma Physics Laboratory. The experiment was designed to test theories about how Tokamaks would behave in a high-performance, steady-state regime.