Magneto-inertial fusion

Last updated

Magneto-inertial fusion (MIF) describes a class of fusion devices which combine aspects of magnetic confinement fusion and inertial confinement fusion in an attempt to lower the cost of fusion devices. [1] MIF uses magnetic fields to confine an initial warm, low-density plasma, then compresses that plasma to fusion conditions using an impulsive driver or "liner."

Contents

Magneto-inertial fusion approaches differ in the degree of magnetic organization present in the initial target, as well as the nature and speed of the imploding liner. Laser, solid, [2] liquid and plasma [3] liners have all been proposed.

Magneto-inertial fusion begins with a warm dense plasma target containing a magnetic field. Plasma's conductivity prevents it from crossing magnetic field lines. As a result, compressing the target amplifies the magnetic field. [4] [5] [6] Since the magnetic field reduces particle transport, the field insulates the target from the liner.

The starships in Mike Kupari's novel Her Brother's Keeper are propelled in part by magneto-inertial fusion rockets. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Plasma stability</span> Degree to which disturbing a plasma system at equilibrium will destabilize it

The stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it. The stability of the system determines if the perturbations will grow, oscillate, or be damped out.

<span class="mw-page-title-main">Inertial confinement fusion</span> Branch of fusion energy research

Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with fuel. The targets are small pellets, typically containing deuterium (2H) and tritium (3H).

<span class="mw-page-title-main">Fusion power</span> Electricity generation through nuclear fusion

Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2023, no device has reached net power.

<span class="mw-page-title-main">Inertial electrostatic confinement</span> Fusion power research concept

Inertial electrostatic confinement, or IEC, is a class of fusion power devices that use electric fields to confine the plasma rather than the more common approach using magnetic fields found in magnetic confinement fusion (MCF) designs. Most IEC devices directly accelerate their fuel to fusion conditions, thereby avoiding energy losses seen during the longer heating stages of MCF devices. In theory, this makes them more suitable for using alternative aneutronic fusion fuels, which offer a number of major practical benefits and makes IEC devices one of the more widely studied approaches to fusion.

<span class="mw-page-title-main">Z-pinch</span> Plasma compressor and nuclear fusion system

In fusion power research, the Z-pinch is a type of plasma confinement system that uses an electric current in the plasma to generate a magnetic field that compresses it. These systems were originally referred to simply as pinch or Bennett pinch, but the introduction of the θ-pinch concept led to the need for clearer, more precise terminology.

<span class="mw-page-title-main">Magnetic confinement fusion</span> Approach to controlled thermonuclear fusion using magnetic fields

Magnetic confinement fusion (MCF) is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of controlled fusion research, along with inertial confinement fusion.

<span class="mw-page-title-main">Field-reversed configuration</span> Magnetic confinement fusion reactor

A field-reversed configuration (FRC) is a type of plasma device studied as a means of producing nuclear fusion. It confines a plasma on closed magnetic field lines without a central penetration. In an FRC, the plasma has the form of a self-stable torus, similar to a smoke ring.

<span class="mw-page-title-main">Spheromak</span>

A spheromak is an arrangement of plasma formed into a toroidal shape similar to a smoke ring. The spheromak contains large internal electric currents and their associated magnetic fields arranged so the magnetohydrodynamic forces within the spheromak are nearly balanced, resulting in long-lived (microsecond) confinement times without external fields. Spheromaks belong to a type of plasma configuration referred to as the compact toroids. A spheromak can be made and sustained using magnetic flux injection, leading to a dynomak.

<span class="mw-page-title-main">Pinch (plasma physics)</span> Compression of an electrically conducting filament by magnetic forces

A pinch is the compression of an electrically conducting filament by magnetic forces, or a device that does such. The conductor is usually a plasma, but could also be a solid or liquid metal. Pinches were the first type of device used for experiments in controlled nuclear fusion power.

The polywell is a design for a fusion reactor based on two ideas: heating ions by concentrating (-) charge to accelerate the ions and trapping a diamagnetic plasma inside a cusp field.

Magnetized Target Fusion (MTF) is a fusion power concept that combines features of magnetic confinement fusion (MCF) and inertial confinement fusion (ICF). Like the magnetic approach, the fusion fuel is confined at lower density by magnetic fields while it is heated into a plasma. As with the inertial approach, fusion is initiated by rapidly squeezing the target to greatly increase fuel density and temperature. Although the resulting density is far lower than in ICF, it is thought that the combination of longer confinement times and better heat retention will let MTF operate, yet be easier to build. The term magneto-inertial fusion (MIF) is similar, but encompasses a wider variety of arrangements. The two terms are often applied interchangeably to experiments.

General Fusion is a Canadian company based in Vancouver, British Columbia, which is developing a fusion power device based on magnetized target fusion (MTF). The company was founded in 2002 by Dr. Michel Laberge. The company has more than 150 employees in three countries, with additional centers co-located with fusion research laboratories near London, and Oak Ridge, Tennessee, US.

<span class="mw-page-title-main">Magnetized liner inertial fusion</span> Method of producing controlled nuclear fusion

Magnetized liner inertial fusion (MagLIF) is an emerging method of producing controlled nuclear fusion. It is part of the broad category of inertial fusion energy (IFE) systems, which drives the inward movement of fusion fuel, thereby compressing it to reach densities and temperatures where fusion reactions occur. Previous IFE experiments used laser drivers to reach these conditions, whereas MagLIF uses a combination of lasers for heating and Z-pinch for compression. A variety of theoretical considerations suggest such a system will reach the required conditions for fusion with a machine of significantly less complexity than the pure-laser approach. There are currently at least two facilities testing feasibility of the MagLIF concept, the Z-machine at Sandia Labs in the US and Primary Test Stand (PTS) located in Mianyang, China.

A plasma railgun is a linear accelerator which, like a projectile railgun, uses two long parallel electrodes to accelerate a "sliding short" armature. However, in a plasma railgun, the armature and ejected projectile consists of plasma, or hot, ionized, gas-like particles, instead of a solid slug of material. Scientific plasma railguns are typically operated in vacuum and not at air pressure. They are of value because they produce muzzle velocities of up to several hundreds of kilometers per second. Because of this, these devices have applications in magnetic confinement fusion (MCF), magneto-inertial fusion (MIF), high energy density physics research (HEDP), laboratory astrophysics, and as a plasma propulsion engine for spacecraft.

The Star Thrust Experiment (STX) was a plasma physics experiment at the University of Washington's Redmond Plasma Physics Laboratory which ran from 1999 to 2001. The experiment studied magnetic plasma confinement to support controlled nuclear fusion experiments. Specifically, STX pioneered the possibility of forming a Field-reversed configuration (FRC) by using a Rotating Magnetic Field (RMF).

<span class="mw-page-title-main">Compact Toroidal Hybrid</span>

The Compact Toroidal Hybrid (CTH) is an experimental device at Auburn University that uses magnetic fields to confine high-temperature plasmas. CTH is a torsatron type of stellarator with an external, continuously wound helical coil that generates the bulk of the magnetic field for containing a plasma.

Dmitri Dmitriyevich Ryutov is a Russian theoretical plasma physicist.

The history of nuclear fusion began early in the 20th century as an inquiry into how stars powered themselves and expanded to incorporate a broad inquiry into the nature of matter and energy, as potential applications expanded to include warfare, energy production and rocket propulsion.

References

  1. Why Magnetized Target Fusion Offers a Low-Cost Development Path For Fusion Energy (PDF)
  2. Taccetti, J. M.; et al. (2003), "FRX-L: A Field-Reversed Configuration Plasma Injector For Magnetized Target Fusion" (PDF), Review of Scientific Instruments, 74 (10): 4314, Bibcode:2003RScI...74.4314T, doi:10.1063/1.1606534
  3. Plasma-Jet Driven Magneto-Inertial Fusion, archived from the original on 2012-08-17, retrieved 2012-07-24
  4. Thio, Y. C. F. (2008), "Status of the US program in magneto-inertial fusion" (PDF), Journal of Physics: Conference Series, 112 (4): 042084, Bibcode:2008JPhCS.112d2084T, doi:10.1088/1742-6596/112/4/042084, S2CID   250693659
  5. Wessel, F. J.; Felber, F. S.; Wild, N. C.; Rahman, H. U.; Fisher, A.; Ruden, E. (1986-04-28). "Generation of high magnetic fields using a gas‐puff Z pinch". Applied Physics Letters. 48 (17): 1119–1121. Bibcode:1986ApPhL..48.1119W. doi:10.1063/1.96616. ISSN   0003-6951.
  6. Rahman, H. U.; Wessel, F. J.; Rostoker, N. (1995). "Staged Z pinch". Physical Review Letters. 74: 714. doi:10.1103/PhysRevLett.74.714.
  7. Kupari, Mike (2015). Her Brother's Keeper. Riverdale, New York: Baen Books. p. 40. ISBN   978-1-4767-8090-0. OCLC   920469663.