Levitated dipole

Last updated
Plasma in the Levitating Dipole Experiment Plasma in the Levitating Dipole Experiment.png
Plasma in the Levitating Dipole Experiment

A levitated dipole is a type of nuclear fusion reactor design using a superconducting torus which is magnetically levitated inside the reactor chamber. The name refers to the magnetic dipole that forms within the reaction chamber, similar to Earth's or Jupiter's magnetospheres. It is believed that such an apparatus could contain plasma more efficiently than other fusion reactor designs. [1] The concept of the levitated dipole as a fusion reactor was first theorized by Akira Hasegawa in 1987. [2]

Contents

Concept

The Earth's magnetic field is generated by the circulation of charges in the Earth's molten core. The resulting magnetic dipole field forms a shape with magnetic field lines passing through the Earth's center, reaching the surface near the poles and extending far into space above the equator. Charged particles entering the field will tend to follow the lines of force, moving north or south. As they reach the polar regions, the magnetic lines begin to cluster together, and this increasing field can cause particles below a certain energy threshold to reflect, and begin travelling in the opposite direction. Such particles bounce back and forth between the poles until they collide with other particles. Particles with greater energy continue towards the Earth, impacting the atmosphere and causing the aurora.

This basic concept is used in the magnetic mirror approach to fusion energy. The mirror uses a solenoid to confine the plasma in the center of a cylinder, and then two magnets at either end to force the magnetic lines closer together to create reflecting areas. One of the most promising of the early approaches to fusion, the mirror ultimately proved to be very "leaky", with the fuel refusing to properly reflect from the ends as the density and energy were increased. Annoyingly, it was the particles with the most energy, those most likely to undergo fusion, that preferentially escaped. Research into large mirror machines ended in the 1980s as it became clear they would not reach fusion breakeven in a practically sized device.

The levitated dipole can be thought of, in some ways, as a toroidal mirror, much more similar to the Earth's field than the linear system in a traditional mirror. In this case, the confinement area is not the linear area between the mirrors, but the toroidal area around the outside of the central magnet, similar to the area around the Earth's equator. Particles in this area that move up or down see increasing magnetic density and tend to move back towards the equator area again. This gives the system some level of natural stability. Particles with higher energy, the ones that would escape a traditional mirror, instead follow the field lines through the hollow center of the magnet, recirculating back into the equatorial area again.

This makes the levitated dipole unique when compared with other magnetic confinement machines. In those experiments, small fluctuations can cause significant energy loss. By contrast, in a dipolar magnetic field, fluctuations tend to compress the plasma, without energy loss. This compression effect was first noticed by Akira Hasegawa (of the Hasegawa-Mima equation) after participating in the Voyager 2 encounter with Uranus. [2]

Examples

The Levitated Dipole Experiment (LDX) Outside the LDX chamber.png
The Levitated Dipole Experiment (LDX)

The concept of the levitated dipole was first realized when Jay Kesner of MIT and Michael Mauel of Columbia University made a joint proposal to test the concept in 1997. [3] This led to the development of two experiments: the Levitated Dipole Experiment (LDX) at MIT and the Collisionless Terrella Experiment (CTX) at Columbia University. [4]

Related Research Articles

<span class="mw-page-title-main">Stellarator</span> Plasma device using external magnets to confine plasma

A stellarator is a plasma device that relies primarily on external magnets to confine a plasma. Scientists researching magnetic confinement fusion aim to use stellarator devices as a vessel for nuclear fusion reactions. The name refers to the possibility of harnessing the power source of the stars, such as the Sun. It is one of the earliest fusion power devices, along with the z-pinch and magnetic mirror.

<span class="mw-page-title-main">Tokamak</span> Magnetic confinement device used to produce thermonuclear fusion power

A tokamak is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. As of 2016, it was the leading candidate for a practical fusion reactor. The word "tokamak" is derived from a Russian acronym meaning "toroidal chamber with magnetic coils".

<span class="mw-page-title-main">Magnetic mirror</span> Type of nuclear fusion reactor

A magnetic mirror, known as a magnetic trap in Russia and briefly as a pyrotron in the US, is a type of magnetic confinement fusion device used in fusion power to trap high temperature plasma using magnetic fields. The mirror was one of the earliest major approaches to fusion power, along with the stellarator and z-pinch machines.

<span class="mw-page-title-main">Fusion power</span> Electricity generation through nuclear fusion

Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2023, no device has reached net power.

<span class="mw-page-title-main">Reversed field pinch</span> Magnetic field plasma confinement device

A reversed-field pinch (RFP) is a device used to produce and contain near-thermonuclear plasmas. It is a toroidal pinch which uses a unique magnetic field configuration as a scheme to magnetically confine a plasma, primarily to study magnetic confinement fusion. Its magnetic geometry is somewhat different from that of the more common tokamak. As one moves out radially, the portion of the magnetic field pointing toroidally reverses its direction, giving rise to the term reversed field. This configuration can be sustained with comparatively lower fields than that of a tokamak of similar power density. One of the disadvantages of this configuration is that it tends to be more susceptible to non-linear effects and turbulence. This makes it a useful system for studying non-ideal (resistive) magnetohydrodynamics. RFPs are also used in studying astrophysical plasmas, which share many common features.

<span class="mw-page-title-main">Levitated Dipole Experiment</span>

The Levitated Dipole Experiment (LDX) was an experiment investigating the generation of fusion power using the concept of a levitated dipole. The device was the first of its kind to test the levitated dipole concept and was funded by the US Department of Energy. The machine was also part of a collaboration between the MIT Plasma Science and Fusion Center and Columbia University, where another (non-levitated) dipole experiment, the Collisionless Terrella Experiment (CTX), was located.

<span class="mw-page-title-main">Magnetic confinement fusion</span> Approach to controlled thermonuclear fusion using magnetic fields

Magnetic confinement fusion (MCF) is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of controlled fusion research, along with inertial confinement fusion.

<span class="mw-page-title-main">Field-reversed configuration</span> Magnetic confinement fusion reactor

A field-reversed configuration (FRC) is a type of plasma device studied as a means of producing nuclear fusion. It confines a plasma on closed magnetic field lines without a central penetration. In an FRC, the plasma has the form of a self-stable torus, similar to a smoke ring.

<span class="mw-page-title-main">Spheromak</span>

A spheromak is an arrangement of plasma formed into a toroidal shape similar to a smoke ring. The spheromak contains large internal electric currents and their associated magnetic fields arranged so the magnetohydrodynamic forces within the spheromak are nearly balanced, resulting in long-lived (microsecond) confinement times without external fields. Spheromaks belong to a type of plasma configuration referred to as the compact toroids. A spheromak can be made and sustained using magnetic flux injection, leading to a dynomak.

The beta of a plasma, symbolized by β, is the ratio of the plasma pressure (p = nkBT) to the magnetic pressure (pmag = B²/2μ0). The term is commonly used in studies of the Sun and Earth's magnetic field, and in the field of fusion power designs.

<span class="mw-page-title-main">Helically Symmetric Experiment</span>

The Helically Symmetric Experiment, is an experimental plasma confinement device at the University of Wisconsin–Madison, with design principles that are intended to be incorporated into a fusion reactor. The HSX is a modular coil stellarator which is a toroid-shaped pressure vessel with external electromagnets which generate a magnetic field for the purpose of containing a plasma. It began operation in 1999.

Compact toroids are a class of toroidal plasma configurations that are self-stable, and whose configuration does not require magnet coils running through the center of the toroid. They are studied primarily in the field of fusion energy, where the lack of complex magnets and a simple geometry may allow the construction of dramatically simpler and less expensive fusion reactors.

<span class="mw-page-title-main">Safety factor (plasma physics)</span>

In a toroidal fusion power reactor, the magnetic fields confining the plasma are formed in a helical shape, winding around the interior of the reactor. The safety factor, labeled q or q(r), is the ratio of the times a particular magnetic field line travels around a toroidal confinement area's "long way" (toroidally) to the "short way" (poloidally).

<span class="mw-page-title-main">Spherical tokamak</span> Fusion power device

A spherical tokamak is a type of fusion power device based on the tokamak principle. It is notable for its very narrow profile, or aspect ratio. A traditional tokamak has a toroidal confinement area that gives it an overall shape similar to a donut, complete with a large hole in the middle. The spherical tokamak reduces the size of the hole as much as possible, resulting in a plasma shape that is almost spherical, often compared to a cored apple. The spherical tokamak is sometimes referred to as a spherical torus and often shortened to ST.

<span class="mw-page-title-main">Bumpy torus</span> Class of magnetic fusion energy devices

The bumpy torus is a class of magnetic fusion energy devices that consist of a series of magnetic mirrors connected end-to-end to form a closed torus. It is based on a discovery made by a team headed by Ray Dandl at Oak Ridge National Laboratory in the 1960s.

<span class="mw-page-title-main">Akira Hasegawa</span>

Akira Hasegawa is a Japanese theoretical physicist and engineer who has worked in the U.S. and Japan. He is known for his work in the derivation of the Hasegawa–Mima equation, which describes fundamental plasma turbulence and the consequent generation of zonal flow that controls plasma diffusion. Hasegawa also made the discovery of optical solitons in glass fibers, a concept that is essential for high speed optical communications.

The history of nuclear fusion began early in the 20th century as an inquiry into how stars powered themselves and expanded to incorporate a broad inquiry into the nature of matter and energy, as potential applications expanded to include warfare, energy production and rocket propulsion.

<span class="mw-page-title-main">Theta pinch</span> Fusion power reactor design

Theta-pinch, or θ-pinch, is a type of fusion power reactor design. The name refers to the configuration of currents used to confine the plasma fuel in the reactor, arranged to run around a cylinder in the direction normally denoted as theta in polar coordinate diagrams. The name was chosen to differentiate it from machines based on the pinch effect that arranged their currents running down the centre of the cylinder; these became known as z-pinch machines, referring to the Z-axis in cartesian coordinates.

References

  1. "MIT tests unique approach to fusion power". MIT News, David Chandler, MIT News Office, March 19, 2008. Accessed March 2008
  2. 1 2 Hasegawa, Akira (1987). "A dipole field fusion reactor". Comments on Plasma Physics and Controlled Fusion. 11 (3): 147–151. ISSN   0374-2806.
  3. Kesner, J; Mauel, M (1997). "Plasma Confinement in a Levitated Magnetic Dipole" (PDF). Plasma Physics Reports. 23 (9): 742. Bibcode:1997PlPhR..23..742K.
  4. "CTX". sites.apam.columbia.edu. Retrieved 2020-06-22.