Pure fusion weapon

Last updated

A pure fusion weapon is a hypothetical hydrogen bomb design that does not need a fission "primary" explosive to ignite the fusion of deuterium and tritium, two heavy isotopes of hydrogen used in fission-fusion thermonuclear weapons. Such a weapon would require no fissile material and would therefore be much easier to develop in secret than existing weapons. Separating weapons-grade uranium (U-235) or breeding plutonium (Pu-239) requires a substantial and difficult-to-conceal industrial investment, and blocking the sale and transfer of the needed machinery has been the primary mechanism to control nuclear proliferation to date. [1]

Contents

Explanation

All current thermonuclear weapons use a fission bomb as a first stage to create the high temperatures and pressures necessary to start a fusion reaction between deuterium and tritium in a second stage. For many years, nuclear weapon designers have researched whether it is possible to create high enough temperatures and pressures inside a confined space to ignite a fusion reaction, without using fission. Pure fusion weapons offer the possibility of generating arbitrarily small nuclear yields because no critical mass of fissile fuel need be assembled for detonation, as with a conventional fission primary needed to spark a fusion explosion. There is also the advantage of reduced collateral damage stemming from fallout because these weapons would not create the highly radioactive byproducts made by fission-type weapons. These weapons would be lethal not only because of their explosive force, which could be large compared to bombs based on chemical explosives, but also because of the neutrons they generate.

While various neutron source devices have been developed, some of them based on fusion reactions, none of them are able to produce a net energy yield, either in controlled form for energy production or uncontrolled for a weapon.

Progress

Despite the many millions of dollars spent by the U.S. between 1952 and 1992 to produce a pure fusion weapon, no measurable success was ever achieved. In 1998, the U.S. Department of Energy (DOE) released a restricted data declassification decision stating that even if the DOE made a substantial investment in the past to develop a pure fusion weapon, "the U.S. is not known to have and is not developing a pure fusion weapon and no credible design for a pure fusion weapon resulted from the DOE investment". The power densities needed to ignite a fusion reaction still seem attainable only with the aid of a fission explosion, or with large apparatus such as powerful lasers like those at the National Ignition Facility, the Sandia Z-pinch machine, or various magnetic tokamaks. Regardless of any claimed advantages of pure fusion weapons, building those weapons does not appear to be feasible using currently available technologies and many have expressed concern that pure fusion weapons research and development would subvert the intent of the Nuclear Non-Proliferation Treaty and the Comprehensive Test Ban Treaty.

It has been claimed that it is possible to conceive of a crude, deliverable, pure fusion weapon, using only present-day, unclassified technology. The weapon design [2] weighs approximately 3 tonnes, and might have a total yield of approximately 3 tonnes of TNT. The proposed design uses a large explosively pumped flux compression generator to produce the high power density required to ignite the fusion fuel. From the point of view of explosive damage, such a weapon would have no clear advantages over a conventional explosive, but the massive neutron flux could deliver a lethal dose of radiation to humans within a 500-meter radius (most of those fatalities would occur over a period of months, rather than immediately).

Alternative fusion trigger

Some researchers have examined the use of antimatter [3] as an alternative fusion trigger, mainly in the context of antimatter-catalyzed nuclear pulse propulsion but also nuclear weapons. [4] [5] [6] Such a system, in a weapons context, would have many of the desired properties of a pure fusion weapon. The technical barriers to producing and containing the required quantities of antimatter appear formidable, well beyond present capabilities.

Induced gamma emission is another approach that is currently being researched. Very high energy-density chemicals such as ballotechnics and others have also been suggested as a means of triggering a pure fusion weapon. [ citation needed ]

Nuclear isomers have also been investigated for use in pure fusion weaponry. Hafnium and tantalum isomers can be induced to emit very strong gamma radiation. Gamma emission from these isomers may have enough energy to start a thermonuclear reaction, without requiring any fissile material. [ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Nuclear weapon</span> Explosive weapon that utilizes nuclear reactions

A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or a combination of fission and fusion reactions, producing a nuclear explosion. Both bomb types release large quantities of energy from relatively small amounts of matter.

<span class="mw-page-title-main">Nuclear fission</span> Nuclear reaction splitting an atom into multiple parts

Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactive decay.

A neutron bomb, officially defined as a type of enhanced radiation weapon (ERW), is a low-yield thermonuclear weapon designed to maximize lethal neutron radiation in the immediate vicinity of the blast while minimizing the physical power of the blast itself. The neutron release generated by a nuclear fusion reaction is intentionally allowed to escape the weapon, rather than being absorbed by its other components. The neutron burst, which is used as the primary destructive action of the warhead, is able to penetrate enemy armor more effectively than a conventional warhead, thus making it more lethal as a tactical weapon.

Antimatter-catalyzed nuclear pulse propulsion is a variation of nuclear pulse propulsion based upon the injection of antimatter into a mass of nuclear fuel to initiate a nuclear chain reaction for propulsion when the fuel does not normally have a critical mass.

In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy in a system may be typified by either slow neutrons or fast neutrons. Fissile material can be used to fuel thermal-neutron reactors, fast-neutron reactors and nuclear explosives.

<span class="mw-page-title-main">Nuclear weapon design</span> Process by which nuclear WMDs are designed and produced

Nuclear weapon designs are physical, chemical, and engineering arrangements that cause the physics package of a nuclear weapon to detonate. There are three existing basic design types:

<span class="mw-page-title-main">Neutron moderator</span> Substance that slows down particles with no electric charge

In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely more susceptible than fast neutrons to propagate a nuclear chain reaction of uranium-235 or other fissile isotope by colliding with their atomic nucleus.

<span class="mw-page-title-main">Uranium-238</span> Isotope of uranium

Uranium-238 is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it is fissionable by fast neutrons, and is fertile, meaning it can be transmuted to fissile plutonium-239. 238U cannot support a chain reaction because inelastic scattering reduces neutron energy below the range where fast fission of one or more next-generation nuclei is probable. Doppler broadening of 238U's neutron absorption resonances, increasing absorption as fuel temperature increases, is also an essential negative feedback mechanism for reactor control.

<span class="mw-page-title-main">Red mercury</span> Alleged chemical substance

Red mercury is a discredited substance, most likely a hoax perpetrated by con artists who sought to take advantage of gullible buyers on the black market for arms. These con artists described it as a substance used in the creation of nuclear weapons; because of the secrecy surrounding nuclear weapons development, it is difficult to disprove their claims completely. However, all samples of alleged "red mercury" analyzed in the public literature have proven to be well-known, common substances of no interest to weapons makers.

<span class="mw-page-title-main">Boosted fission weapon</span> Type of nuclear weapon

A boosted fission weapon usually refers to a type of nuclear bomb that uses a small amount of fusion fuel to increase the rate, and thus yield, of a fission reaction. The neutrons released by the fusion reactions add to the neutrons released due to fission, allowing for more neutron-induced fission reactions to take place. The rate of fission is thereby greatly increased such that much more of the fissile material is able to undergo fission before the core explosively disassembles. The fusion process itself adds only a small amount of energy to the process, perhaps 1%.

<span class="mw-page-title-main">Integral fast reactor</span> Nuclear reactor design

The integral fast reactor is a design for a nuclear reactor using fast neutrons and no neutron moderator. IFR would breed more fuel and is distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.

Uranium-233 is a fissile isotope of uranium that is bred from thorium-232 as part of the thorium fuel cycle. Uranium-233 was investigated for use in nuclear weapons and as a reactor fuel. It has been used successfully in experimental nuclear reactors and has been proposed for much wider use as a nuclear fuel. It has a half-life of 160,000 years.

<span class="mw-page-title-main">Thermonuclear weapon</span> 2-stage nuclear weapon

A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lower mass, or a combination of these benefits. Characteristics of nuclear fusion reactions make possible the use of non-fissile depleted uranium as the weapon's main fuel, thus allowing more efficient use of scarce fissile material such as uranium-235 or plutonium-239. The first full-scale thermonuclear test was carried out by the United States in 1952 and the concept has since been employed by most of the world's nuclear powers in the design of their weapons.

Plutonium (94Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long before being found in nature, the first isotope synthesized being plutonium-238 in 1940. Twenty plutonium radioisotopes have been characterized. The most stable are plutonium-244 with a half-life of 80.8 million years; plutonium-242 with a half-life of 373,300 years; and plutonium-239 with a half-life of 24,110 years; and plutonium-240 with a half-life of 6,560 years. This element also has eight meta states; all have half-lives of less than one second.

<span class="mw-page-title-main">Gun-type fission weapon</span> Fission-based nuclear weapon

Gun-type fission weapons are fission-based nuclear weapons whose design assembles their fissile material into a supercritical mass by the use of the "gun" method: shooting one piece of sub-critical material into another. Although this is sometimes pictured as two sub-critical hemispheres driven together to make a supercritical sphere, typically a hollow projectile is shot onto a spike, which fills the hole in its center. Its name is a reference to the fact that it is shooting the material through an artillery barrel as if it were a projectile.

<span class="mw-page-title-main">Weapons-grade nuclear material</span> Nuclear material pure enough to be used for nuclear weapons

Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon and has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nuclear weapons are the most common examples.

Uranium-236 (236U) is an isotope of uranium that is neither fissile with thermal neutrons, nor very good fertile material, but is generally considered a nuisance and long-lived radioactive waste. It is found in spent nuclear fuel and in the reprocessed uranium made from spent nuclear fuel.

Reactor-grade plutonium (RGPu) is the isotopic grade of plutonium that is found in spent nuclear fuel after the uranium-235 primary fuel that a nuclear power reactor uses has burnt up. The uranium-238 from which most of the plutonium isotopes derive by neutron capture is found along with the U-235 in the low enriched uranium fuel of civilian reactors.

<span class="mw-page-title-main">Uranium hydride bomb</span> Type of atomic bomb

The uranium hydride bomb was a variant design of the atomic bomb first suggested by Robert Oppenheimer in 1939 and advocated and tested by Edward Teller. It used deuterium, an isotope of hydrogen, as a neutron moderator in a uranium-deuterium ceramic compact. Unlike all other fission-bomb types, the concept relies on a chain reaction of slow nuclear fission. Bomb efficiency was harmed by the slowing of neutrons since the latter delays the reaction, as delineated by Rob Serber in his 1992 extension of the original Los Alamos Primer.

A pressurized heavy-water reactor (PHWR) is a nuclear reactor that uses heavy water (deuterium oxide D2O) as its coolant and neutron moderator. PHWRs frequently use natural uranium as fuel, but sometimes also use very low enriched uranium. The heavy water coolant is kept under pressure to avoid boiling, allowing it to reach higher temperature (mostly) without forming steam bubbles, exactly as for a pressurized water reactor. While heavy water is very expensive to isolate from ordinary water (often referred to as light water in contrast to heavy water), its low absorption of neutrons greatly increases the neutron economy of the reactor, avoiding the need for enriched fuel. The high cost of the heavy water is offset by the lowered cost of using natural uranium and/or alternative fuel cycles. As of the beginning of 2001, 31 PHWRs were in operation, having a total capacity of 16.5 GW(e), representing roughly 7.76% by number and 4.7% by generating capacity of all current operating reactors.

References

  1. Davidson, Keay (1998-07-20). "Activists: Super-laser may bring tiny nukes". San Francisco Chronicle . Critics raise another objection to the development of pure-fusion bombs: A nation could more easily hide the manufacture of such bombs than of ordinary nuclear weapons. The reason is that pure-fusion bombs would not require uranium or plutonium, whose radioactivity can be detected by U.N. weapons inspectors. The present way to "prevent the spread or proliferation of nuclear weapons is by detecting the materials needed to make nuclear weapons, (namely) plutonium and highly enriched uranium," Cabasso says. "Since you don't need those for pure-fusion weapons, then that means of detecting the existence of the weapons disappears."
  2. Jones, S. L.; von Hippel, F. N. (1998). "The Question of Pure Fusion Explosions under the CTBT" (PDF). Science and Global Security. 7 (2): 129–150. Bibcode:1998S&GS....7..129J. doi:10.1080/08929889808426452.
  3. Gsponer, Andre (2005). "Fourth Generation Nuclear Weapons: Military effectiveness and collateral effects". arXiv: physics/0510071 .
  4. Ramsey, Syed (12 May 2016). Tools of War: History of Weapons in Modern Times. Vij Books India Pvt Ltd. ISBN   9789386019837 via Google Books.
  5. Wang, Brian (22 September 2015). "Details on antimatter-triggered fusion bombs". NextBigFuture.
  6. "Antimatter weapons". cui.unige.ch.