Particle-beam weapon

Last updated

A particle-beam weapon uses a high-energy beam of atomic or subatomic particles to damage the target by disrupting its atomic and/or molecular structure. A particle-beam weapon is a type of directed-energy weapon, which directs energy in a particular and focused direction using particles with minuscule mass. Some particle-beam weapons have potential practical applications, e.g. as an antiballistic missile defense system. They have been known by myriad names: particle accelerator guns, ion cannons, proton beams, lightning rays, rayguns, etc.

Contents

The concept of particle-beam weapons comes from sound scientific principles and experiments. One process is to simply overheat a target until it is no longer operational. However, after decades of research and development, particle-beam weapons remain at the research stage and it remains to be seen if or when they will be deployed as practical, high-performance military weapons.

Particle accelerators are a well-developed technology used in scientific research. They use electromagnetic fields to accelerate and direct charged particles along a predetermined path, and electrostatic "lenses" to focus these streams for collisions. The cathode ray tube in many twentieth-century televisions and computer monitors is a very simple type of particle accelerator. More powerful versions include synchrotrons and cyclotrons used in nuclear research. A particle-beam weapon is a weaponized version of this technology. It accelerates charged particles (in most cases electrons, positrons, protons, or ionized atoms, but very advanced versions can accelerate other particles such as mercury nuclei) to near-light speed and then directs them towards a target. The particles' kinetic energy is imparted to matter in the target, inducing near-instantaneous and catastrophic superheating at the surface, and when penetrating deeper, ionization effects that can destroy electronics. However, high-power accelerators are extremely massive (sometimes on the order of kilometers in length, like the LHC), with highly constricted construction, operation and maintenance requirements, and thus unable to be weaponized using present technologies.

Beam generation

Charged particle beams naturally diverge rapidly due to mutual repulsion among their charged particles. Neutral beams can remain better focused, because they are not subject to repulsion. Neutral particle beams are ionized, accelerated while ionized, then neutralized before leaving the weapon.

Cyclotron particle accelerators , linear particle accelerators , and synchrotron particle accelerators can accelerate positively charged hydrogen ions (protons) until their velocity approaches the speed of light. Each ion has a kinetic energy range of 100-1000+ MeV. The resulting high energy protons can capture electrons from electron emitter electrodes, and be thus electrically neutralized. This creates an electrically neutral beam of high energy hydrogen atoms, that can proceed in a straight line at near the speed of light to smash into its target and damage it.

The beam emitted may contain 1+ gigajoule of kinetic energy. The speed of a beam approaching that of light (299,792,458 m/s in a vacuum) in combination with the energy created by the weapon was thought to negate any realistic defense. Target hardening through shielding or materials selection was thought to be impractical or ineffective in 1984, [1] especially if the beam could sustain full power and precise focus on the target. [2]

History

The U.S. Strategic Defense Initiative developed a neutral particle beam to be used as a weapon in outer space. [3] Neutral beam accelerator technology was developed at Los Alamos National Laboratory. A prototype was launched aboard a suborbital sounding rocket in July 1989 as part of the Beam Experiments Aboard Rocket (BEAR) project. [4] It reached a maximum altitude of 124 miles, and successfully operated in space for 4 minutes before returning to earth intact. In 2006, the device was transferred from Los Alamos to the Smithsonian Air and Space Museum in Washington, DC. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Cyclotron</span> Type of particle accelerator

A cyclotron is a type of particle accelerator invented by Ernest O. Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. A cyclotron accelerates charged particles outwards from the center of a flat cylindrical vacuum chamber along a spiral path. The particles are held to a spiral trajectory by a static magnetic field and accelerated by a rapidly varying electric field. Lawrence was awarded the 1939 Nobel Prize in Physics for this invention.

<span class="mw-page-title-main">Linear particle accelerator</span> Type of particle accelerator

A linear particle accelerator is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear beamline. The principles for such machines were proposed by Gustav Ising in 1924, while the first machine that worked was constructed by Rolf Widerøe in 1928 at the RWTH Aachen University. Linacs have many applications: they generate X-rays and high energy electrons for medicinal purposes in radiation therapy, serve as particle injectors for higher-energy accelerators, and are used directly to achieve the highest kinetic energy for light particles for particle physics.

A collider is a type of particle accelerator which brings two opposing particle beams together such that the particles collide. Colliders may either be ring accelerators or linear accelerators.

<span class="mw-page-title-main">Synchrotron</span> Type of cyclic particle accelerator

A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the 27-kilometre-circumference (17 mi) Large Hadron Collider (LHC) near Geneva, Switzerland, built in 2008 by the European Organization for Nuclear Research (CERN). It can accelerate beams of protons to an energy of 6.5 tera electronvolts (TeV or 1012 eV).

<span class="mw-page-title-main">TRIUMF</span> Particle physics laboratory in Canada

TRIUMF is Canada's national particle accelerator centre. It is considered Canada's premier physics laboratory, and consistently regarded as one of the world's leading subatomic physics research centres. Owned and operated by a consortium of universities, it is on the south campus of one of its founding members, the University of British Columbia in Vancouver, British Columbia. It houses the world's largest cyclotron, a source of 520 MeV protons, which was named an IEEE Milestone in 2010. Its accelerator-focused activities involve particle physics, nuclear physics, nuclear medicine, materials science, and detector and accelerator development.

A charged particle beam is a spatially localized group of electrically charged particles that have approximately the same position, kinetic energy, and direction. The kinetic energies of the particles are much larger than the energies of particles at ambient temperature. The high energy and directionality of charged particle beams make them useful for many applications in particle physics.

<span class="mw-page-title-main">KEK</span> Japanese high-energy physics organization

The High Energy Accelerator Research Organization, known as KEK, is a Japanese organization whose purpose is to operate the largest particle physics laboratory in Japan, situated in Tsukuba, Ibaraki prefecture. It was established in 1997. The term "KEK" is also used to refer to the laboratory itself, which employs approximately 695 employees. KEK's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics, material science, structural biology, radiation science, computing science, nuclear transmutation and so on. Numerous experiments have been constructed at KEK by the internal and international collaborations that have made use of them. Makoto Kobayashi, emeritus professor at KEK, is known globally for his work on CP-violation, and was awarded the 2008 Nobel Prize in Physics.

A particle beam is a stream of charged or neutral particles. In particle accelerators, these particles can move with a velocity close to the speed of light. There is a difference between the creation and control of charged particle beams and neutral particle beams, as only the first type can be manipulated to a sufficient extent by devices based on electromagnetism. The manipulation and diagnostics of charged particle beams at high kinetic energies using particle accelerators are main topics of accelerator physics.

Plasma acceleration is a technique for accelerating charged particles, such as electrons, positrons, and ions, using the electric field associated with electron plasma wave or other high-gradient plasma structures. The plasma acceleration structures are created either using ultra-short laser pulses or energetic particle beams that are matched to the plasma parameters. These techniques offer a way to build high performance particle accelerators of much smaller size than conventional devices. The basic concepts of plasma acceleration and its possibilities were originally conceived by Toshiki Tajima and John M. Dawson of UCLA in 1979. The initial experimental designs for a "wakefield" accelerator were conceived at UCLA by Chandrashekhar J. Joshi et al. Current experimental devices show accelerating gradients several orders of magnitude better than current particle accelerators over very short distances, and about one order of magnitude better at the one meter scale.

<span class="mw-page-title-main">On-Line Isotope Mass Separator</span> Physics facility at CERN

The ISOLDE Radioactive Ion Beam Facility, is an on-line isotope separator facility located at the heart of the CERN accelerator complex on the Franco-Swiss border. The name of the facility is an acronym for Isotope Separator On Line DEvice. Created in 1964, the ISOLDE facility started delivering radioactive ion beams to users in 1967. Originally located at the SynchroCyclotron accelerator, the facility has been upgraded several times most notably in 1992 when the whole facility was moved to be connected to CERN's ProtonSynchroton Booster (PSB). Entering its 6th decade of existence, ISOLDE is currently the longest-running facility in operation at CERN, a longevity due to a continuous development of the facility and its experiments that has kept ISOLDE at the forefront of science with radioactive ion beams. From the first pioneering isotope separation on-line (ISOL) beams to the latest technical advances allowing for the production of the most exotic species, ISOLDE benefits a wide range of physics communities with applications covering nuclear, atomic, molecular and solid-state physics, but also biophysics and astrophysics, as well as high-precision experiments looking for physics beyond the Standard Model. The facility is operated by the ISOLDE Collaboration, comprising CERN and fifteen (mostly) European countries. As of 2019, more than 800 experimentalists around the world are coming to ISOLDE to perform typically 45 different experiments per year.

<span class="mw-page-title-main">AWAKE</span>

The AWAKE facility at CERN is a proof-of-principle experiment, which investigates wakefield plasma acceleration using a proton bunch as a driver, a world-wide first. It aims to accelerate a low-energy witness bunch of electrons from 15 to 20 MeV to several GeV over a short distance by creating a high acceleration gradient of several GV/m. Particle accelerators currently in use, like CERN's LHC, use standard or superconductive RF-cavities for acceleration, but they are limited to an acceleration gradient in the order of 100 MV/m.

<span class="mw-page-title-main">Proton Synchrotron</span> CERNs first synchrotron accelerator

The Proton Synchrotron is a particle accelerator at CERN. It is CERN's first synchrotron, beginning its operation in 1959. For a brief period the PS was the world's highest energy particle accelerator. It has since served as a pre-accelerator for the Intersecting Storage Rings (ISR) and the Super Proton Synchrotron (SPS), and is currently part of the Large Hadron Collider (LHC) accelerator complex. In addition to protons, PS has accelerated alpha particles, oxygen and sulfur nuclei, electrons, positrons, and antiprotons.

<span class="mw-page-title-main">Electron scattering</span> Deviation of electrons from their original trajectories

Electron scattering occurs when electrons are displaced from their original trajectory. This is due to the electrostatic forces within matter interaction or, if an external magnetic field is present, the electron may be deflected by the Lorentz force. This scattering typically happens with solids such as metals, semiconductors and insulators; and is a limiting factor in integrated circuits and transistors.

<span class="mw-page-title-main">Alternating Gradient Synchrotron</span> Particle accelerator at Brookhaven National Laboratory

The Alternating Gradient Synchrotron (AGS) is a particle accelerator located at the Brookhaven National Laboratory in Long Island, New York, United States.

Particle therapy is a form of external beam radiotherapy using beams of energetic neutrons, protons, or other heavier positive ions for cancer treatment. The most common type of particle therapy as of August 2021 is proton therapy.

<span class="mw-page-title-main">Strong focusing</span> Converging particle beams using alternating field gradients

In accelerator physics strong focusing or alternating-gradient focusing is the principle that, using sets of multiple electromagnets, it is possible to make a particle beam simultaneously converge in both directions perpendicular to the direction of travel. By contrast, weak focusing is the principle that nearby circles, described by charged particles moving in a uniform magnetic field, only intersect once per revolution.

<span class="mw-page-title-main">Particle accelerator</span> Research apparatus for particle physics

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.

An energy recovery linac (ERL) provides a beam of electrons used to produce x-rays by synchrotron radiation. First proposed in 1965 the idea gained interest since the early 2000s.

<span class="mw-page-title-main">Synchro-Cyclotron (CERN)</span>

The Synchro-Cyclotron, or Synchrocyclotron (SC), built in 1957, was CERN’s first accelerator. It was 15.7 metres (52 ft) in circumference and provided beams for CERN's first experiments in particle and nuclear physics. It accelerated particles to energies up to 600 MeV. The foundation stone of CERN was laid at the site of the Synchrocyclotron by the first Director-General of CERN, Felix Bloch. After its remarkably long 33 years of service time, the SC was decommissioned in 1990. Nowadays it accepts visitors as an exhibition area in CERN.

Colliding beam fusion (CBF), or colliding beam fusion reactor (CBFR), is a class of fusion power concepts that are based on two or more intersecting beams of fusion fuel ions that are independently accelerated to fusion energies using a variety of particle accelerator designs or other means. One of the beams may be replaced by a static target, in which case the approach is termed accelerator based fusion or beam-target fusion, but the physics is the same as colliding beams.

References

  1. Roberds, Richard M (July–August 1984), "Introducing the Particle-Beam Weapon", Air University Review, USA: Air Force, archived from the original on 2012-04-17, retrieved 2006-05-17.
  2. Neutral Particle Beam (NPB), Federation of American Scientists, 2005.
  3. P. G. O'Shea; T. A. Butler; M. T. Lynch; K. F. McKenna; et al. "A Linear Accelerator in Space – The Beam Experiment Aboard Rocket" (PDF). Proceedings of the Linear Accelerator Conference 1990, los Alamos National Laboratory.
  4. "'Star Wars' Beam Weapon Has Successful Space Test". Los Angeles Times. July 18, 1989.
  5. "Neutral Particle Beam Accelerator, Beam Experiment Aboard Rocket". Smithsonian Air and Space Museum. Retrieved 15 May 2021.