Synchrotron

Last updated
The first synchrotron to use the "racetrack" design with straight sections, a 300 MeV electron synchrotron at University of Michigan in 1949, designed by Dick Crane. University of Michigan synchrotron.jpg
The first synchrotron to use the "racetrack" design with straight sections, a 300 MeV electron synchrotron at University of Michigan in 1949, designed by Dick Crane.

A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. [1] The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the 27-kilometre-circumference (17 mi) Large Hadron Collider (LHC) near Geneva, Switzerland, built in 2008 by the European Organization for Nuclear Research (CERN). [2] It can accelerate beams of protons to an energy of 13 tera  electronvolts (TeV or 1012 eV).

Contents

The synchrotron principle was invented by Vladimir Veksler in 1944. [3] Edwin McMillan constructed the first electron synchrotron in 1945, arriving at the idea independently, having missed Veksler's publication (which was only available in a Soviet journal, although in English). [4] [5] [6] The first proton synchrotron was designed by Sir Marcus Oliphant [5] [7] and built in 1952. [5]

Types

Several specialized types of synchrotron machines are used today:

Principle of operation

The synchrotron evolved from the cyclotron, the first cyclic particle accelerator. While a classical cyclotron uses both a constant guiding magnetic field and a constant-frequency electromagnetic field (and is working in classical approximation), its successor, the isochronous cyclotron, works by local variations of the guiding magnetic field, adapting to the increasing relativistic mass of particles during acceleration. [8]

A drawing of the Cosmotron Cosmotron (PSF).png
A drawing of the Cosmotron

In a synchrotron, this adaptation is done by variation of the magnetic field strength in time, rather than in space. For particles that are not close to the speed of light, the frequency of the applied electromagnetic field may also change to follow their non-constant circulation time. By increasing these parameters accordingly as the particles gain energy, their circulation path can be held constant as they are accelerated. This allows the vacuum chamber for the particles to be a large thin torus, rather than a disk as in previous, compact accelerator designs. Also, the thin profile of the vacuum chamber allowed for a more efficient use of magnetic fields than in a cyclotron, enabling the cost-effective construction of larger synchrotrons.[ citation needed ]

While the first synchrotrons and storage rings like the Cosmotron and ADA strictly used the toroid shape, the strong focusing principle independently discovered by Ernest Courant et al. [9] [10] and Nicholas Christofilos [11] allowed the complete separation of the accelerator into components with specialized functions along the particle path, shaping the path into a round-cornered polygon. Some important components are given by radio frequency cavities for direct acceleration, dipole magnets (bending magnets) for deflection of particles (to close the path), and quadrupole / sextupole magnets for beam focusing.[ citation needed ]

The interior of the Australian Synchrotron facility, a synchrotron light source. Dominating the image is the storage ring, showing a beamline at front right. The storage ring's interior includes a synchrotron and a linac. Aust.-Synchrotron-Interior-Panorama,-14.06.2007.jpg
The interior of the Australian Synchrotron facility, a synchrotron light source. Dominating the image is the storage ring, showing a beamline at front right. The storage ring's interior includes a synchrotron and a linac.

The combination of time-dependent guiding magnetic fields and the strong focusing principle enabled the design and operation of modern large-scale accelerator facilities like colliders and synchrotron light sources. The straight sections along the closed path in such facilities are not only required for radio frequency cavities, but also for particle detectors (in colliders) and photon generation devices such as wigglers and undulators (in third generation synchrotron light sources).[ citation needed ]

The maximum energy that a cyclic accelerator can impart is typically limited by the maximum strength of the magnetic fields and the minimum radius (maximum curvature) of the particle path. Thus one method for increasing the energy limit is to use superconducting magnets, these not being limited by magnetic saturation. Electron/positron accelerators may also be limited by the emission of synchrotron radiation, resulting in a partial loss of the particle beam's kinetic energy. The limiting beam energy is reached when the energy lost to the lateral acceleration required to maintain the beam path in a circle equals the energy added each cycle.[ citation needed ]

More powerful accelerators are built by using large radius paths and by using more numerous and more powerful microwave cavities. Lighter particles (such as electrons) lose a larger fraction of their energy when deflected. Practically speaking, the energy of electron/positron accelerators is limited by this radiation loss, while this does not play a significant role in the dynamics of proton or ion accelerators. The energy of such accelerators is limited strictly by the strength of magnets and by the cost.[ citation needed ]

Injection procedure

Unlike in a cyclotron, synchrotrons are unable to accelerate particles from zero kinetic energy; one of the obvious reasons for this is that its closed particle path would be cut by a device that emits particles. Thus, schemes were developed to inject pre-accelerated particle beams into a synchrotron. The pre-acceleration can be realized by a chain of other accelerator structures like a linac, a microtron or another synchrotron; all of these in turn need to be fed by a particle source comprising a simple high voltage power supply, typically a Cockcroft-Walton generator.[ citation needed ]

Starting from an appropriate initial value determined by the injection energy, the field strength of the dipole magnets is then increased. If the high energy particles are emitted at the end of the acceleration procedure, e.g. to a target or to another accelerator, the field strength is again decreased to injection level, starting a new injection cycle. Depending on the method of magnet control used, the time interval for one cycle can vary substantially between different installations.[ citation needed ]

In large-scale facilities

Modern industrial-scale synchrotrons can be very large (here, Soleil near Paris) SOLEIL le 01 juin 2005.jpg
Modern industrial-scale synchrotrons can be very large (here, Soleil near Paris)

One of the early large synchrotrons, now retired, is the Bevatron, constructed in 1950 at the Lawrence Berkeley Laboratory. The name of this proton accelerator comes from its power, in the range of 6.3 GeV (then called BeV for billion electron volts; the name predates the adoption of the SI prefix giga-). A number of transuranium elements, unseen in the natural world, were first created with this machine. This site is also the location of one of the first large bubble chambers used to examine the results of the atomic collisions produced here.[ citation needed ]

Another early large synchrotron is the Cosmotron built at Brookhaven National Laboratory which reached 3.3 GeV in 1953. [12]

Among the few synchrotrons around the world, 16 are located in the United States. Many of them belong to national laboratories; few are located in universities.[ citation needed ]

As part of colliders

Until August 2008, the highest energy collider in the world was the Tevatron, at the Fermi National Accelerator Laboratory, in the United States. It accelerated protons and antiprotons to slightly less than 1 TeV of kinetic energy and collided them together. The Large Hadron Collider (LHC), which has been built at the European Laboratory for High Energy Physics (CERN), has roughly seven times this energy (so proton-proton collisions occur at roughly 14 TeV). It is housed in the 27 km tunnel which formerly housed the Large Electron Positron (LEP) collider, so it will maintain the claim as the largest scientific device ever built. The LHC will also accelerate heavy ions (such as lead) up to an energy of 1.15 PeV.[ citation needed ]

The largest device of this type seriously proposed was the Superconducting Super Collider (SSC), which was to be built in the United States. This design, like others, used superconducting magnets which allow more intense magnetic fields to be created without the limitations of core saturation. While construction was begun, the project was cancelled in 1994, citing excessive budget overruns this was due to naïve cost estimation and economic management issues rather than any basic engineering flaws. It can also be argued that the end of the Cold War resulted in a change of scientific funding priorities that contributed to its ultimate cancellation. However, the tunnel built for its placement still remains, although empty. While there is still potential for yet more powerful proton and heavy particle cyclic accelerators, it appears that the next step up in electron beam energy must avoid losses due to synchrotron radiation. This will require a return to the linear accelerator, but with devices significantly longer than those currently in use. There is at present a major effort to design and build the International Linear Collider (ILC), which will consist of two opposing linear accelerators, one for electrons and one for positrons. These will collide at a total center of mass energy of 0.5 TeV.[ citation needed ]

As part of synchrotron light sources

Synchrotron radiation also has a wide range of applications (see synchrotron light) and many 2nd and 3rd generation synchrotrons have been built especially to harness it. The largest of those 3rd generation synchrotron light sources are the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, the Advanced Photon Source (APS) near Chicago, United States, and SPring-8 in Japan, accelerating electrons up to 6, 7 and 8 GeV, respectively.[ citation needed ]

Synchrotrons which are useful for cutting edge research are large machines, costing tens or hundreds of millions of dollars to construct, and each beamline (there may be 20 to 50 at a large synchrotron) costs another two or three million dollars on average. These installations are mostly built by the science funding agencies of governments of developed countries, or by collaborations between several countries in a region, and operated as infrastructure facilities available to scientists from universities and research organisations throughout the country, region, or world. More compact models, however, have been developed, such as the Compact Light Source.[ citation needed ]

Applications

See also

Related Research Articles

<span class="mw-page-title-main">Cyclotron</span> Type of particle accelerator

A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. A cyclotron accelerates charged particles outwards from the center of a flat cylindrical vacuum chamber along a spiral path. The particles are held to a spiral trajectory by a static magnetic field and accelerated by a rapidly varying electric field. Lawrence was awarded the 1939 Nobel Prize in Physics for this invention.

<span class="mw-page-title-main">Tevatron</span> Defunct particle accelerator at Fermilab in Illinois, USA (1983–2011)

The Tevatron was a circular particle accelerator in the United States, at the Fermi National Accelerator Laboratory, east of Batavia, Illinois, and is the second highest energy particle collider ever built, after the Large Hadron Collider (LHC) of the European Organization for Nuclear Research (CERN) near Geneva, Switzerland. The Tevatron was a synchrotron that accelerated protons and antiprotons in a 6.28 km (3.90 mi) ring to energies of up to 1 TeV, hence its name. The Tevatron was completed in 1983 at a cost of $120 million and significant upgrade investments were made during its active years of 1983–2011.

<span class="mw-page-title-main">Linear particle accelerator</span> Type of particle accelerator

A linear particle accelerator is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear beamline. The principles for such machines were proposed by Gustav Ising in 1924, while the first machine that worked was constructed by Rolf Widerøe in 1928 at the RWTH Aachen University. Linacs have many applications: they generate X-rays and high energy electrons for medicinal purposes in radiation therapy, serve as particle injectors for higher-energy accelerators, and are used directly to achieve the highest kinetic energy for light particles for particle physics.

ISABELLE was a 200+200 GeV proton–proton colliding beam particle accelerator partially built by the United States government at Brookhaven National Laboratory in Upton, New York, before it was cancelled in July, 1983.

<span class="mw-page-title-main">Dipole magnet</span> Simplest type of magnet

A dipole magnet is the simplest type of magnet. It has two poles, one north and one south. Its magnetic field lines form simple closed loops which emerge from the north pole, re-enter at the south pole, then pass through the body of the magnet. The simplest example of a dipole magnet is a bar magnet.

A collider is a type of particle accelerator that brings two opposing particle beams together such that the particles collide. Colliders may either be ring accelerators or linear accelerators.

A charged particle beam is a spatially localized group of electrically charged particles that have approximately the same position, kinetic energy, and direction. The kinetic energies of the particles are much larger than the energies of particles at ambient temperature. The high energy and directionality of charged particle beams make them useful for many applications in particle physics.

<span class="mw-page-title-main">HERA (particle accelerator)</span>

HERA was a particle accelerator at DESY in Hamburg. It was operated from 1992 to 30 June 2007. At HERA, electrons or positrons were brought to collision with protons at a center-of-mass energy of 320 GeV. HERA was used mainly to study the structure of protons and the properties of quarks, laying the foundation for much of the science done at the Large Hadron Collider (LHC) at the CERN particle physics laboratory today. HERA is the only lepton–proton collider in the world to date and was on the energy frontier in certain regions of the kinematic range.

A particle beam is a stream of charged or neutral particles. In particle accelerators, these particles can move with a velocity close to the speed of light. There is a difference between the creation and control of charged particle beams and neutral particle beams, as only the first type can be manipulated to a sufficient extent by devices based on electromagnetism. The manipulation and diagnostics of charged particle beams at high kinetic energies using particle accelerators are main topics of accelerator physics.

<span class="mw-page-title-main">AWAKE</span>

The AWAKE facility at CERN is a proof-of-principle experiment, which investigates wakefield plasma acceleration using a proton bunch as a driver, a world-wide first. It aims to accelerate a low-energy witness bunch of electrons from 15 to 20 MeV to several GeV over a short distance by creating a high acceleration gradient of several GV/m. Particle accelerators currently in use, like CERN's LHC, use standard or superconductive RF-cavities for acceleration, but they are limited to an acceleration gradient in the order of 100 MV/m.

<span class="mw-page-title-main">Intersecting Storage Rings</span> Particle accelerator at CERN, Switzerland

The ISR was a particle accelerator at CERN. It was the world's first hadron collider, and ran from 1971 to 1984, with a maximum center of mass energy of 62 GeV. From its initial startup, the collider itself had the capability to produce particles like the J/ψ and the upsilon, as well as observable jet structure; however, the particle detector experiments were not configured to observe events with large momentum transverse to the beamline, leaving these discoveries to be made at other experiments in the mid-1970s. Nevertheless, the construction of the ISR involved many advances in accelerator physics, including the first use of stochastic cooling, and it held the record for luminosity at a hadron collider until surpassed by the Tevatron in 2004.

<span class="mw-page-title-main">Proton Synchrotron</span> CERNs first synchrotron accelerator

The Proton Synchrotron is a particle accelerator at CERN. It is CERN's first synchrotron, beginning its operation in 1959. For a brief period the PS was the world's highest energy particle accelerator. It has since served as a pre-accelerator for the Intersecting Storage Rings (ISR) and the Super Proton Synchrotron (SPS), and is currently part of the Large Hadron Collider (LHC) accelerator complex. In addition to protons, PS has accelerated alpha particles, oxygen and sulfur nuclei, electrons, positrons, and antiprotons.

<span class="mw-page-title-main">Electron scattering</span> Deviation of electrons from their original trajectories

Electron scattering occurs when electrons are displaced from their original trajectory. This is due to the electrostatic forces within matter interaction or, if an external magnetic field is present, the electron may be deflected by the Lorentz force. This scattering typically happens with solids such as metals, semiconductors and insulators; and is a limiting factor in integrated circuits and transistors.

<span class="mw-page-title-main">Proton Synchrotron Booster</span> CERN particle accelerator

The Proton Synchrotron Booster (PSB) is the first and smallest circular proton accelerator in the accelerator chain at the CERN injection complex, which also provides beams to the Large Hadron Collider. It contains four superimposed rings with a radius of 25 meters, which receive protons with an energy of 160 MeV from the linear accelerator Linac4 and accelerate them up to 2.0 GeV, ready to be injected into the Proton Synchrotron (PS). Before the PSB was built in 1972, Linac 1 injected directly into the Proton Synchrotron, but the increased injection energy provided by the booster allowed for more protons to be injected into the PS and a higher luminosity at the end of the accelerator chain.

<span class="mw-page-title-main">Particle accelerator</span> Research apparatus for particle physics

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.

<span class="mw-page-title-main">Storage ring</span> Type of particle accelerator

A storage ring is a type of circular particle accelerator in which a continuous or pulsed particle beam may be kept circulating typically for many hours. Storage of a particular particle depends upon the mass, momentum and usually the charge of the particle to be stored. Storage rings most commonly store electrons, positrons, or protons.

A Fixed-Field alternating gradient Accelerator is a circular particle accelerator concept that can be characterized by its time-independent magnetic fields and the use of alternating gradient strong focusing.

An energy recovery linac (ERL) is a type of linear particle accelerator that provides a beam of electrons used to produce x-rays by synchrotron radiation. First proposed in 1965 the idea gained interest since the early 2000s.

<span class="mw-page-title-main">Future Circular Collider</span> Proposed post-LHC particle accelerator at CERN, Geneva, Switzerland

The Future Circular Collider (FCC) is a proposed particle accelerator with an energy significantly above that of previous circular colliders, such as the Super Proton Synchrotron, the Tevatron, and the Large Hadron Collider (LHC). The FCC project is considering three scenarios for collision types: FCC-hh, for hadron-hadron collisions, including proton-proton and heavy ion collisions, FCC-ee, for electron-positron collisions, and FCC-eh, for electron-hadron collisions.

<span class="mw-page-title-main">Super Proton–Antiproton Synchrotron</span> Particle accelerator at CERN

The Super Proton–Antiproton Synchrotron was a particle accelerator that operated at CERN from 1981 to 1991. To operate as a proton-antiproton collider the Super Proton Synchrotron (SPS) underwent substantial modifications, altering it from a one beam synchrotron to a two-beam collider. The main experiments at the accelerator were UA1 and UA2, where the W and Z bosons were discovered in 1983. Carlo Rubbia and Simon van der Meer received the 1984 Nobel Prize in Physics for their contributions to the SppS-project, which led to the discovery of the W and Z bosons. Other experiments conducted at the SppS were UA4, UA5 and UA8.

References

  1. Chao, A. W.; Mess, K. H.; Tigner, M.; et al., eds. (2013). Handbook of Accelerator Physics and Engineering (2nd ed.). World Scientific. doi:10.1142/8543. ISBN   978-981-4417-17-4. S2CID   108427390.
  2. "The Large Hadron Collider". CERN. 2023-12-15. Retrieved 2024-01-15.
  3. Veksler, V. I. (1944). "A new method of accelerating relativistic particles" (PDF). Comptes Rendus de l'Académie des Sciences de l'URSS . 43 (8): 346–348.
  4. J. David Jackson and W.K.H. Panofsky (1996). "EDWIN MATTISON MCMILLAN: A Biographical Memoir" (PDF). National Academy of Sciences.
  5. 1 2 3 Wilson. "Fifty Years of Synchrotrons" (PDF). CERN . Retrieved 2012-01-15.
  6. Zinovyeva, Larisa. "On the question about the autophasing discovery authorship" . Retrieved 2015-06-29.
  7. Rotblat, Joseph (2000). "Obituary: Mark Oliphant (1901–2000)". Nature. 407 (6803): 468. doi: 10.1038/35035202 . PMID   11028988.
  8. McMillan, Edwin M. (February 1984). "A history of the synchrotron". Physics Today. 37 (2): 31–37. doi:10.1063/1.2916080. ISSN   0031-9228. S2CID   121370125.
  9. Courant, E. D.; Livingston, M. S.; Snyder, H. S. (1952). "The Strong-Focusing Synchrotron—A New High Energy Accelerator". Physical Review . 88 (5): 1190–1196. Bibcode:1952PhRv...88.1190C. doi:10.1103/PhysRev.88.1190. hdl: 2027/mdp.39015086454124 .
  10. Blewett, J. P. (1952). "Radial Focusing in the Linear Accelerator". Physical Review . 88 (5): 1197–1199. Bibcode:1952PhRv...88.1197B. doi:10.1103/PhysRev.88.1197.
  11. USpatent 2736799, Nicholas Christofilos,"Focussing System for Ions and Electrons",issued 1956-02-28
  12. The Cosmotron