A list of particle accelerators used for particle physics experiments. Some early particle accelerators that more properly did nuclear physics, but existed prior to the separation of particle physics from that field, are also included. Although a modern accelerator complex usually has several stages of accelerators, only accelerators whose output has been used directly for experiments are listed.
These all used single beams with fixed targets. They tended to have very briefly run, inexpensive, and unnamed experiments.
Accelerator | Location | Years of operation | Shape | Accelerated Particle | Kinetic Energy | Notes and discoveries made |
---|---|---|---|---|---|---|
9-inch cyclotron | University of California, Berkeley | 1931 | Circular | H+ 2 | 1.0 MeV | Proof of concept |
11-inch cyclotron | University of California, Berkeley | 1932 | Circular | Proton | 1.2 MeV | |
27-inch cyclotron | University of California, Berkeley | 1932–1936 | Circular | Deuteron | 4.8 MeV | Investigated deuteron-nucleus interactions |
37-inch cyclotron | University of California, Berkeley | 1937–1938 | Circular | Deuteron | 8 MeV | Discovered many isotopes |
60-inch cyclotron | University of California, Berkeley | 1939–1962[1] | Circular | Deuteron | 16 MeV | Discovered many isotopes. |
88-inch cyclotron | Berkeley Rad Lab, now Lawrence Berkeley National Laboratory | 1961–Present | Circular (Isochronous) | Hydrogen through uranium | MeV to several GeV | Discovered many isotopes. Verified two element discoveries. Performed the world's first single event effects radiation testing in 1979, and tested parts and materials for most US spacecraft since then. |
184-inch cyclotron | Berkeley Rad Lab | 1942–1993 | Circular | Various | MeV to GeV | Research on uranium isotope separation |
Calutrons | Y-12 Plant, Oak Ridge, TN | 1943– | "Horseshoe" | Uranium nuclei | Used to separate Uranium 235 isotope for the Manhattan project, after the end of World War II used for separation of medical and other isotopes. | |
95-inch cyclotron | Harvard Cyclotron Laboratory | 1949–2002 | Circular | Proton | 160 MeV | Used for nuclear physics 1949 – ~ 1961, development of clinical proton therapy until 2002 |
JULIC | Forschungszentrum Juelich, Germany | 1967–present | Circular | Proton, deuteron | 75 MeV | Now used as a preaccelerator for COSY and irradiation purposes |
[1] The magnetic pole pieces and return yoke from the 60-inch cyclotron were later moved to UC Davis and incorporated into a 76-inch isochronous cyclotron which is still in use today [1]
Accelerator | Location | Years of operation | Shape and size | Accelerated particle | Kinetic Energy | Notes and discoveries made |
---|---|---|---|---|---|---|
Linear particle accelerator | Aachen University, Germany | 1928 | Linear Beamline | Ion | 50 keV | Proof of concept |
Cockcroft and Walton's electrostatic accelerator | Cavendish Laboratory | 1932 | See Cockroft- Walton generator | Proton | 0.7 MeV | First to artificially split the nucleus (Lithium) |
Betatron | Siemens-Schuckertwerke, Germany | 1935 | Circular | Electron | 1.8 MeV | Proof of concept |
Accelerator | Location | Years of operation | Shape and size | Accelerated particle | Kinetic Energy | Notes and discoveries made | INSPIRE link |
---|---|---|---|---|---|---|---|
Cosmotron | BNL | 1953–1968 | Circular ring (72 meters around) | Proton | 3.3 GeV | Discovery of V particles, first artificial production of some mesons | INSPIRE |
Birmingham Synchrotron | University of Birmingham | 1953–1967 | Proton | 1 GeV | |||
Bevatron | Berkeley Rad Lab | 1954–~1970 | "Race track" | Proton | 6.2 GeV | Strange particle experiments, antiproton and antineutron discovered, resonances discovered | INSPIRE |
Bevalac, combination of SuperHILAC linear accelerator, a diverting tube, then the Bevatron | Berkeley Rad Lab | ~1970–1993 | Linear accelerator followed by "race track" | Any and all sufficiently stable nuclei could be accelerated | Observation of compressed nuclear matter. Depositing ions in tumors in cancer research. | INSPIRE | |
Saturne | Saclay, France | 1958–1997 [2] | 3 GeV | INSPIRE | |||
Synchrophasotron | Dubna, Russia | December 1957 – 2003 | 10 GeV | INSPIRE | |||
Zero Gradient Synchrotron | ANL | 1963–1979 | 12.5 GeV | INSPIRE | |||
U-70 Proton Synchrotron | IHEP, Russia | 1967–present | Circular ring (perimeter around 1.5 km) | Proton | 70 GeV | INSPIRE | |
Proton Synchrotron | CERN | 1959–present | Circular ring (628 meters around) | Proton | 26 GeV | Used to feed ISR (until 1984), SPS, LHC, AD | INSPIRE |
Proton Synchrotron Booster | CERN | 1972–present | Circular Synchrotron | Protons | 1.4 GeV | Used to feed PS, ISOLDE | INSPIRE |
Super Proton Synchrotron | CERN | 1976–present | Circular Synchrotron | Protons and ions | 450 GeV | COMPASS, OPERA and ICARUS at Laboratori Nazionali del Gran Sasso | INSPIRE |
Alternating Gradient Synchrotron | BNL | 1960–present | Circular ring (808 meters) | Proton (unpolarized and polarized), deuteron, helium-3, copper, gold, uranium | 33 GeV | J/ψ, muon neutrino, CP violation in kaons, injects heavy ions and polarized protons into RHIC | INSPIRE |
Proton Synchrotron (KEK) | KEK | 1976–2007 | Circular ring | Proton | 12 GeV | ||
COSY | Juelich, Germany | 1993–present | Circular ring (183.47 m) | Protons, Deuterons | 2.88 GeV | The legacy of the experimental hadron physics programme at COSY | INSPIRE |
ALBA | Cerdañola del Vallés, Spain | 2011–present | Circular ring (270 m) | Electrons | 3 GeV | INSPIRE | |
Sirius | São Paulo State, Brazil | 2018–present | Circular ring (518.4 m) | Electrons, Au, Sn, TiO2 | 3 GeV | INSPIRE | |
Australian Synchrotron | Monash University, Melbourne | 2007–present | Circular ring (216 m) | Electrons | 3 GeV | INSPIRE |
More modern accelerators that were also run in fixed target mode; often, they will also have been run as colliders, or accelerated particles for use in subsequently built colliders.
Accelerator | Location | Years of operation | Shape and size | Accelerated Particle | Kinetic Energy | Notes and discoveries made | INSPIRE link |
---|---|---|---|---|---|---|---|
High Current Proton Accelerator Los Alamos Neutron Science Center (originally Los Alamos Meson Physics Facility) | Los Alamos National Laboratory | 1972–Present | Linear (800 m) and Circular (30 m) | Protons | 800 MeV | Neutron materials research, proton radiography, high energy neutron research, ultra cold neutrons | INSPIRE |
PSI, HIPA High Intensity 590 MeV Proton Accelerator | PSI, Villigen, Switzerland | 1974–present | 0.8 MeV CW, 72 MeV Injector 2, 590 MeV Ringcyclotron | Protons | 590 MeV, 2.4 mA, =1.4 MW | Highest beam power, used for meson and neutron production with applications in materials science | INSPIRE |
TRIUMF Cyclotron | TRIUMF, Vancouver BC | 1974–present | Circular | H-ion | 500 MeV | World's largest cyclotron, at 17.9m | INSPIRE |
ISIS neutron source | Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, | 1984–present | H- Linac followed by proton RCS | Protons | 800 MeV | INSPIRE | |
Spallation Neutron Source | Oak Ridge National Laboratory | 2006–Present | Linear (335 m) and Circular (248 m) | Protons | 800 MeV – 1 GeV | Produces the most intense pulsed neutron beams in the world for scientific research and industrial development. | INSPIRE |
J-PARC RCS | Tōkai, Ibaraki | 2007–Present | Triangular, 348m circumference | Protons | 3 GeV | Used for material and life sciences and input to J-PARC main ring | INSPIRE |
Accelerator | Location | Years of operation | Shape and size | Accelerated particle | Kinetic Energy | Experiments | Notes | INSPIRE link |
---|---|---|---|---|---|---|---|---|
Antiproton Accumulator | CERN | 1980–1996 | Design study | INSPIRE | ||||
Antiproton collector | CERN | 1986–1996 | Antiprotons | Design study | INSPIRE | |||
Nuclotron | JINR | 1992–present | Circular ring | Proton and heavy ions | 12.6 GeV (protons), 4.5 Gev/n (heavy ions) | INSPIRE | ||
Antiproton Decelerator | CERN | 2000–present | Storage ring | Protons and antiprotons | 26 GeV | ATHENA, ATRAP, ASACUSA, ACE, ALPHA, AEGIS | Design study | INSPIRE |
Low Energy Antiproton Ring | CERN | 1982–1996 | Antiprotons | PS210 | Design study | INSPIRE | ||
Cambridge Electron Accelerator | Harvard University and MIT, Cambridge, MA | 1962–1974 [3] | 236 ft diameter synchrotron [4] | Electrons | 6 GeV | [3] | ||
SLAC Linac | SLAC National Accelerator Laboratory | 1966–present | 3 km linear accelerator | Electron/ Positron | 50 GeV | Repeatedly upgraded, used to feed PEP, SPEAR, SLC, and PEP-II. Now split into 1 km sections feeding LCLS, FACET & LCLS-II. | INSPIRE | |
Fermilab Booster | Fermilab | 1970–present | Circular synchrotron | Protons | 8 GeV | MiniBooNE | INSPIRE | |
Fermilab Main Injector | Fermilab | 1995–present | Circular synchrotron | Protons and antiprotons | 150 GeV | MINOS, MINERνA, NOνA | INSPIRE | |
Fermilab Main Ring | Fermilab | 1970–1995 | Circular synchrotron | Protons and antiprotons | 400 GeV (until 1979), 150 GeV thereafter | |||
Electron Synchrotron of Frascati | Laboratori Nazionali di Frascati | 1959–? (decommissioned) | 9m circular synchrotron | Electron | 1.1 GeV | |||
Bates Linear Accelerator | Middleton, MA | 1967–2005 | 500 MeV recirculating linac and storage ring | Polarized electrons | 1 GeV | INSPIRE | ||
Continuous Electron Beam Accelerator Facility (CEBAF) | Thomas Jefferson National Accelerator Facility, Newport News, VA | 1995–present | 6 GeV recirculating linac (recently upgraded to 12 GeV) | Polarized electrons | 6–12 GeV | DVCS, PrimEx II, Qweak, GlueX | First large-scale deployment of superconducting RF technology. | INSPIRE |
ELSA | Physikalisches Institut der Universität Bonn, Germany | 1987–present | Synchrotron and stretcher | (Polarized) electrons | 3.5 GeV | BGOOD, | INSPIRE | |
MAMI | Mainz, Germany | 1975–Present | Multilevel racetrack microtron | Polarized electrons | 1.5 GeV accelerator | A1 – Electron Scattering, A2 – Real Photons, A4 – Parity Violation, X1 – X-Ray Radiation | INSPIRE | |
Tevatron | Fermilab | 1983–2011 | Superconducting circular synchrotron | Protons | 980 GeV | INSPIRE | ||
Universal Linear Accelerator (UNILAC) | GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany | 1974–Present | Linear (120 m) | Ions of all naturally occurring elements | 2–11.4 MeV/u | INSPIRE | ||
Schwerionensynchrotron (SIS18) | GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany | 1990–Present | Synchrotron with 271 m circumference | Ions of all naturally occurring elements | U: 50–1000 MeV/u Ne: 50–2000 MeV/u p: 4,5 GeV | INSPIRE | ||
Experimental Storage Ring (ESR) | GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany | 1990–Present | Ions of all naturally occurring elements | 0.005 – 0.5 GeV/u | ||||
J-PARC Main Ring | Tōkai, Ibaraki | 2009–Present | Triangular, 500m diameter | Protons | 30 GeV | J-PARC Hadron Experimental Facility, T2K | Can also provide 8 GeV beam | INSPIRE |
Low Energy Neutron Source (LENS) | Indiana University, Bloomington, Indiana (USA) | 2004–Present | Linear | Protons | 13 MeV [5] | SANS, SESAME, MIS | LENS Website Archived 2019-09-28 at the Wayback Machine | |
Cornell BNL ERL Test Accelerator (CBETA) [6] | Cornell University, Ithaca / NY (USA) | 2019–Present | Energy recovery linac with SRF cavities, 4 turns, and all beams in one fixed field alternating-gradient lattice of permanent magnets | Electrons | 150 MeV | A prototype facility for Electron Ion Colliders | INSPIRE |
Accelerator | Location | Years of operation | Shape and circumference | Electron energy | Positron energy | Experiments | Notable Discoveries | INSPIRE link |
---|---|---|---|---|---|---|---|---|
AdA | LNF, Frascati, Italy; Orsay, France | 1961–1964 | Circular, 3 meters | 250 MeV | 250 MeV | Touschek effect (1963); first e+e− interactions recorded (1964) | INSPIRE | |
Princeton-Stanford (e−e−) | Stanford, California | 1962–1967 | Two-ring, 12 m | 300 MeV | 300 MeV | e−e− interactions | ||
VEP-1 (e−e−) | INP, Novosibirsk, Soviet Union | 1964–1968 | Two-ring, 2.70 m | 130 MeV | 130 MeV | e−e− scattering; QED radiative effects confirmed | INSPIRE | |
VEPP-2 | INP, Novosibirsk, Soviet Union | 1965–1974 | Circular, 11.5 m | 700 MeV | 700 MeV | OLYA, CMD | multihadron production (1966), e+e−→φ (1966), e+e−→γγ (1971) | INSPIRE |
ACO | LAL, Orsay, France | 1965–1975 | Circular, 22 m | 550 MeV | 550 MeV | ρ0, K+K−,φ3C, μ+μ−, M2N and DM1 | Vector meson studies; then ACO was used as synchrotron light source until 1988 | INSPIRE |
SPEAR | SLAC | 1972–1990(?) | Circular | 3 GeV | 3 GeV | Mark I, Mark II, Mark III | Discovery of Charmonium states and Tau lepton | INSPIRE |
VEPP-2M | BINP, Novosibirsk | 1974–2000 | Circular, 17.88 m | 700 MeV | 700 MeV | ND, SND, CMD-2 | e+e− cross sections, radiative decays of ρ, ω, and φ mesons | INSPIRE |
DORIS | DESY | 1974–1993 | Circular, 300m | 5 GeV | 5 GeV | ARGUS, Crystal Ball, DASP, PLUTO | Oscillation in neutral B mesons | INSPIRE |
PETRA | DESY | 1978–1986 | Circular, 2 km | 20 GeV | 20 GeV | JADE, MARK-J, CELLO, PLUTO, TASSO | Discovery of the gluon in three jet events | INSPIRE |
CESR | Cornell University | 1979–2002 | Circular, 768m | 6 GeV | 6 GeV | CUSB, CHESS, CLEO, CLEO-2, CLEO-2.5, CLEO-3 | First observation of B decay, charmless and "radiative penguin" B decays | INSPIRE |
PEP | SLAC | 1980–1990(?) | Mark II | INSPIRE | ||||
SLC | SLAC | 1988–1998(?) | Addition to SLAC Linac | 45 GeV | 45 GeV | SLD, Mark II | First linear collider | INSPIRE |
LEP | CERN | 1989–2000 | Circular, 27 km | 104 GeV | 104 GeV | Aleph, Delphi, Opal, L3 | Only 3 light (m ≤ mZ/2) weakly interacting neutrinos exist, implying only three generations of quarks and leptons | INSPIRE |
BEPC | Beijing, China | 1989–2004 | Circular, 240m | 2.2 GeV | 2.2 GeV | Beijing Spectrometer (I and II) | INSPIRE | |
VEPP-4M | BINP, Novosibirsk | 1994– | Circular, 366m | 6.0 GeV | 6.0 GeV | KEDR [ permanent dead link ] | Precise measurement of psi-meson masses, two-photon physics | |
PEP-II | SLAC | 1998–2008 | Circular, 2.2 km | 9 GeV | 3.1 GeV | BaBar | Discovery of CP violation in B meson system | INSPIRE |
KEKB | KEK | 1999–2009 | Circular, 3 km | 8.0 GeV | 3.5 GeV | Belle | Discovery of CP violation in B meson system | |
DAΦNE | LNF, Frascati, Italy | 1999–present | Circular, 98m | 0.7 GeV | 0.7 GeV | KLOE | Crab-waist collisions (2007) | INSPIRE |
CESR-c | Cornell University | 2002–2008 | Circular, 768m | 6 GeV | 6 GeV | CHESS, CLEO-c | INSPIRE | |
VEPP-2000 | BINP, Novosibirsk | 2006– | Circular, 24.4m | 1.0 GeV | 1.0 GeV | SND, CMD-3 | Round beams (2007) | |
BEPC II | Beijing, China | 2008– | Circular, 240m | 1.89 GeV | 1.89 GeV | Beijing Spectrometer III | ||
VEPP-5 | BINP, Novosibirsk | 2015– | ||||||
ADONE | LNF, Frascati, Italy | 1969–1993 | Circular, 105m | 1.5 GeV | 1.5 GeV | |||
TRISTAN | KEK | 1987–1995 | Circular, 3016m | 30 GeV | 30 GeV | |||
SuperKEKB | KEK | 2016– | Circular, 3 km | 7.0 GeV | 4.0 GeV | Belle II |
Accelerator | Location | Years of operation | Shape and size | Particles collided | Beam energy | Experiments | INSPIRE |
---|---|---|---|---|---|---|---|
Intersecting Storage Rings | CERN | 1971–1984 | Circular rings (948 m around) | Proton/ Proton | 31.5 GeV | INSPIRE | |
Super Proton Synchrotron/SppS | CERN | 1981–1984 | Circular ring (6.9 km around) | Proton/ Antiproton | 270–315 GeV | UA1, UA2 | INSPIRE |
Tevatron Run I | Fermilab | 1992–1995 | Circular ring (6.3 km around) | Proton/ Antiproton | 900 GeV | CDF, D0 | INSPIRE |
Tevatron Run II | Fermilab | 2001–2011 | Circular ring (6.3 km around) | Proton/ Antiproton | 980 GeV | CDF, D0 | INSPIRE |
Relativistic Heavy Ion Collider (RHIC) polarized proton mode | Brookhaven National Laboratory, New York | 2001–present | Hexagonal rings (3.8 km circumference) | Polarized Proton/ Proton | 100–255 GeV | PHENIX, STAR | INSPIRE |
Relativistic Heavy Ion Collider (RHIC) ion mode | Brookhaven National Laboratory, New York | 2000–present | Hexagonal rings (3.8 km circumference) | d-197 Au 79+; 63 | 3.85–100 GeV per nucleon | STAR, PHENIX, BRAHMS, PHOBOS | INSPIRE |
Large Hadron Collider (LHC) proton mode | CERN | 2008–present | Circular rings (27 km circumference) | Proton/ Proton | 6.8 TeV (design: 7 TeV) | ALICE, ATLAS, CMS, LHCb, LHCf, TOTEM | INSPIRE |
Large Hadron Collider (LHC) ion mode | CERN | 2010–present | Circular rings (27 km circumference) | 208 Pb 82+–208 Pb 82+; Proton-208 | 2.76 TeV per nucleon | ALICE, ATLAS, CMS, LHCb | INSPIRE |
Accelerator | Location | Years of operation | Shape and size | Electron energy | Proton energy | Experiments | INSPIRE link |
---|---|---|---|---|---|---|---|
HERA | DESY | 1992–2007 | Circular ring (6336 meters around) | 27.5 GeV | 920 GeV | H1, ZEUS, HERMES experiment, HERA-B | INSPIRE |
Besides the real accelerators listed above, there are hypothetical accelerators often used as hypothetical examples or optimistic projects by particle physicists.
The electron is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ. Being fermions, no two electrons can occupy the same quantum state, per the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: They can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavelength for a given energy.
Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combination of protons and neutrons is called nuclear physics.
A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. A cyclotron accelerates charged particles outwards from the center of a flat cylindrical vacuum chamber along a spiral path. The particles are held to a spiral trajectory by a static magnetic field and accelerated by a rapidly varying electric field. Lawrence was awarded the 1939 Nobel Prize in Physics for this invention.
DESY, short for Deutsches Elektronen-Synchrotron, is a national research centre for fundamental science located in Hamburg and Zeuthen near Berlin in Germany. It operates particle accelerators used to investigate the structure, dynamics and function of matter, and conducts a broad spectrum of interdisciplinary scientific research in four main areas: particle and high energy physics; photon science; astroparticle physics; and the development, construction and operation of particle accelerators. Its name refers to its first project, an electron synchrotron. DESY is publicly financed by the Federal Republic of Germany and the Federal States of Hamburg and Brandenburg and is a member of the Helmholtz Association.
SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a federally funded research and development center in Menlo Park, California, United States. Founded in 1962, the laboratory is now sponsored by the United States Department of Energy and administrated by Stanford University. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 that could accelerate electrons to energies of 50 GeV.
The Tevatron was a circular particle accelerator in the United States, at the Fermi National Accelerator Laboratory, east of Batavia, Illinois, and was the highest energy particle collider until the Large Hadron Collider (LHC) of the European Organization for Nuclear Research (CERN) was built near Geneva, Switzerland. The Tevatron was a synchrotron that accelerated protons and antiprotons in a 6.28 km (3.90 mi) circumference ring to energies of up to 1 TeV, hence its name. The Tevatron was completed in 1983 at a cost of $120 million and significant upgrade investments were made during its active years of 1983–2011.
Synchrotron radiation is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity. It is produced artificially in some types of particle accelerators or naturally by fast electrons moving through magnetic fields. The radiation produced in this way has a characteristic polarization, and the frequencies generated can range over a large portion of the electromagnetic spectrum.
A linear particle accelerator is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear beamline. The principles for such machines were proposed by Gustav Ising in 1924, while the first machine that worked was constructed by Rolf Widerøe in 1928 at the RWTH Aachen University. Linacs have many applications: they generate X-rays and high energy electrons for medicinal purposes in radiation therapy, serve as particle injectors for higher-energy accelerators, and are used directly to achieve the highest kinetic energy for light particles for particle physics.
The Large Electron–Positron Collider (LEP) was one of the largest particle accelerators ever constructed. It was built at CERN, a multi-national centre for research in nuclear and particle physics near Geneva, Switzerland.
A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles.
The Underground Area 2 (UA2) experiment was a high-energy physics experiment at the Proton-Antiproton Collider — a modification of the Super Proton Synchrotron (SPS) — at CERN. The experiment ran from 1981 until 1990, and its main objective was to discover the W and Z bosons. UA2, together with the UA1 experiment, succeeded in discovering these particles in 1983, leading to the 1984 Nobel Prize in Physics being awarded to Carlo Rubbia and Simon van der Meer. The UA2 experiment also observed the first evidence for jet production in hadron collisions in 1981, and was involved in the searches of the top quark and of supersymmetric particles. Pierre Darriulat was the spokesperson of UA2 from 1981 to 1986, followed by Luigi Di Lella from 1986 to 1990.
The International Linear Collider (ILC) is a proposed linear particle accelerator. It is planned to have a collision energy of 500 GeV initially, with the possibility for a later upgrade to 1000 GeV (1 TeV). Although early proposed locations for the ILC were Japan, Europe (CERN) and the USA (Fermilab), the Kitakami highland in the Iwate prefecture of northern Japan has been the focus of ILC design efforts since 2013. The Japanese government is willing to contribute half of the costs, according to the coordinator of study for detectors at the ILC.
The High Energy Accelerator Research Organization, known as KEK, is a Japanese organization whose purpose is to operate the largest particle physics laboratory in Japan, situated in Tsukuba, Ibaraki prefecture. It was established in 1997. The term "KEK" is also used to refer to the laboratory itself, which employs approximately 695 employees. KEK's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics, material science, structural biology, radiation science, computing science, nuclear transmutation and so on. Numerous experiments have been constructed at KEK by the internal and international collaborations that have made use of them. Makoto Kobayashi, emeritus professor at KEK, is known globally for his work on CP-violation, and was awarded the 2008 Nobel Prize in Physics.
The Proton Synchrotron is a particle accelerator at CERN. It is CERN's first synchrotron, beginning its operation in 1959. For a brief period the PS was the world's highest energy particle accelerator. It has since served as a pre-accelerator for the Intersecting Storage Rings (ISR) and the Super Proton Synchrotron (SPS), and is currently part of the Large Hadron Collider (LHC) accelerator complex. In addition to protons, PS has accelerated alpha particles, oxygen and sulfur nuclei, electrons, positrons, and antiprotons.
Electron scattering occurs when electrons are displaced from their original trajectory. This is due to the electrostatic forces within matter interaction or, if an external magnetic field is present, the electron may be deflected by the Lorentz force. This scattering typically happens with solids such as metals, semiconductors and insulators; and is a limiting factor in integrated circuits and transistors.
The Cosmotron was a particle accelerator, specifically a proton synchrotron, at Brookhaven National Laboratory. Its construction was approved by the U.S. Atomic Energy Commission in 1948, reaching its full energy in 1953, and continuing to run until 1966. It was dismantled in 1969.
SPEAR[a] was a collider at the SLAC National Accelerator Laboratory. It began running in 1972, colliding electrons and positrons with an energy of 3 GeV. During the 1970s, experiments at the accelerator played a key role in particle physics research, including the discovery of the
J/ψ
meson, many charmonium states, and the discovery of the tau.
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies to contain them in well-defined beams. Small accelerators are used for fundamental research in particle physics. Accelerators are also used as synchrotron light sources for the study of condensed matter physics. Smaller particle accelerators are used in a wide variety of applications, including particle therapy for oncological purposes, radioisotope production for medical diagnostics, ion implanters for the manufacture of semiconductors, and accelerator mass spectrometers for measurements of rare isotopes such as radiocarbon.
Tests of relativistic energy and momentum are aimed at measuring the relativistic expressions for energy, momentum, and mass. According to special relativity, the properties of particles moving approximately at the speed of light significantly deviate from the predictions of Newtonian mechanics. For instance, the speed of light cannot be reached by massive particles.
The INFN National Laboratory of Frascati (LNF) was founded in 1954 with the objective of furthering particle physics research, and more specifically to host the 1.1 GeV electrosynchrotron, the first accelerator ever built in Italy. The Laboratory later developed the first ever electron-positron collider: from the first prototype AdA, which demonstrated the feasibility, to the ring ADONE and later on to DAΦNE, still operative today (2024). LNF was also the proposed site of the cancelled particle accelerator SuperB.