Australian Synchrotron

Last updated

The Australian Synchrotron is a 3 GeV national synchrotron radiation facility located in Clayton, in the south-eastern suburbs of Melbourne, Victoria. The facility opened in 2007, and is operated by the Australian Nuclear Science and Technology Organisation. [1] [2]

Contents

ANSTO's Australian Synchrotron is a light source facility (in contrast to a collider), which uses particle accelerators to produce a beam of high energy electrons that are boosted to nearly the speed of light and directed into a storage ring where they circulate for many hours or even days at a time. As the path of these electrons are deflected in the storage ring by either bending magnets or insertion devices, they emit synchrotron light. The light is channelled to experimental endstations containing specialised equipment, enabling a range of research applications including high resolution imagery that is not possible under normal laboratory conditions. [3]

ANSTO's Australian Synchrotron supports the research needs of Australia's major universities and research centres, and businesses ranging from small-to-medium enterprises to multinational companies. During 2014–15 the Australian Synchrotron supported more than 4,300 researcher visits and close to 1,000 experiments in areas such as medicine, agriculture, environment, defence, transport, advanced manufacturing and mining. [4]

In 2015, the Australian Government announced a ten-year, A$520 million investment in operations through ANSTO, Australia's Nuclear Science and Technology Organisation . [5] [6] A 1.5 MW solar power system on the roof is expected to save $2 million in electricity costs over 5 years. [7]

In 2020, it was used to help map the molecular structure of the COVID-19 virus, during the ongoing COVID-19 pandemic. [8]

Accelerator systems

The interior of the Australian Synchrotron facility in 2006 before the beamlines were installed. Dominating the image is the storage ring, with an experimental endstation at front right. In the middle of the storage ring is the booster ring and linac. Aust.-Synchrotron-Interior-Panorama,-14.06.2007.jpg
The interior of the Australian Synchrotron facility in 2006 before the beamlines were installed. Dominating the image is the storage ring, with an experimental endstation at front right. In the middle of the storage ring is the booster ring and linac.

Electron gun

The electrons used to provide the synchrotron light are first produced at the electron gun, by thermionic emission from a heated metal cathode. The emitted electrons are then accelerated to an energy of 90 keV (kilo-electron volts) by a 90 kilovolt potential applied across the gun and make their way into the linear accelerator.

Linear accelerator

The linear accelerator (or linac) uses a series of RF cavities, operating at a frequency of 3 GHz, to accelerate the electron beam to an energy of 100 MeV, over a distance of around 15 metres. Due to the nature of this acceleration, the beam must be separated into discrete packets, or 'bunches'. The bunching process is done at the start of the linac, using several 'bunching' cavities. The linac can accelerate a beam once every second. Further along the linac quadrupole magnets are used to help focus the electron beam.

Inside the booster ring shielding, the linac is visible at image right extending from the electron gun at the far wall, and joining into the booster ring seen at the left Aust.-Synchrotron,-Linac-&-Booster-Ring,-14.06.2007.jpg
Inside the booster ring shielding, the linac is visible at image right extending from the electron gun at the far wall, and joining into the booster ring seen at the left

Booster synchrotron

The booster is an electron synchrotron which takes the 100 MeV beam from the linac and increases its energy to 3 GeV. The booster ring is 130 metres in circumference and contains a single 5-cell RF cavity (operating at 500 MHz) which provides energy to the electron beam. Acceleration of the beam is achieved by a simultaneous ramping up of the magnet strength and cavity fields. Each ramping cycle takes approximately 1 second (for a complete ramp up and down).

Storage ring

The storage ring is the final destination for the accelerated electrons. It is 216 metres in circumference and consists of 14 nearly identical sectors. Each sector consists of a straight section and an arc, with the arcs containing two dipole 'bending' magnets each. Each dipole magnet is a potential source of synchrotron light and most straight sections can also host an insertion device, giving the possibility of 30+ beamlines at the Australian Synchrotron. Two of the straight sections are used to host the storage ring 500 MHz RF cavities, which are essential for replacing the energy that the beam loses through synchrotron radiation. The storage ring also contains a large number of quadrupole and sextupole magnets used for beam focusing and chromaticity corrections. The ring is designed to hold 200 mA of stored current with a beam lifetime of over 20 hours.

Vacuum systems

The electron beam is kept within a very high vacuum at all times during the acceleration process and within the storage ring. This vacuum is necessary as any beam collisions with gas molecules will quickly degrade the beam quality and reduce the lifetime of the beam. The vacuum is achieved by enclosing the beam in a stainless steel pipe system, with numerous vacuum pump systems continually working to keep the vacuum quality high. Pressure within the storage ring is typically around 10−13 bar (10 nPa).

Control system

Each digital and analogue I/O channel is associated with a database entry in a customised distributed open source database system called EPICS (Experimental Physics and Industrial Control System). The condition of the system is monitored and controlled by connecting specialised GUIs to the specified database entries. There are about 171,000 database entries (also known as process variables), many of which relate to the physical I/O. About 105,000 of these are permanently archived at intervals ranging from tenths of a seconds to minutes.

Some high level control of the physics-related parameters of the beam is provided through MATLAB which also provides data analysis tools and an interface with a computerised model of the accelerator. Personnel and equipment protection is achieved through the use of PLC-based systems, which also transfer data to EPICS.

The Beamlines also use EPICS as the basis for their control.

Australian Synchrotron beamlines

Soft x-ray beamline and endstation Aust.-Synchrotron-Soft-X-ray-Beamline-Experimental-Station,-14.06.2007.jpg
Soft x-ray beamline and endstation

Beamlines under construction (as of 2023)

See also

Related Research Articles

<span class="mw-page-title-main">Linear particle accelerator</span> Type of particle accelerator

A linear particle accelerator is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear beamline. The principles for such machines were proposed by Gustav Ising in 1924, while the first machine that worked was constructed by Rolf Widerøe in 1928 at the RWTH Aachen University. Linacs have many applications: they generate X-rays and high energy electrons for medicinal purposes in radiation therapy, serve as particle injectors for higher-energy accelerators, and are used directly to achieve the highest kinetic energy for light particles for particle physics.

<span class="mw-page-title-main">Synchrotron light source</span> Particle accelerator designed to produce intense x-ray beams

A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam that are needed to stimulate the high energy electrons to emit photons.

<span class="mw-page-title-main">Diamond Light Source</span> UKs national synchrotron science facility located in Oxfordshire

Diamond Light Source is the UK's national synchrotron light source science facility located at the Harwell Science and Innovation Campus in Oxfordshire.

<span class="mw-page-title-main">Beamline</span> Trajectory of a beam of accelerated particles

In accelerator physics, a beamline refers to the trajectory of the beam of particles, including the overall construction of the path segment along a specific path of an accelerator facility. This part is either

<span class="mw-page-title-main">Synchrotron</span> Type of cyclic particle accelerator

A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the 27-kilometre-circumference (17 mi) Large Hadron Collider (LHC) near Geneva, Switzerland, built in 2008 by the European Organization for Nuclear Research (CERN). It can accelerate beams of protons to an energy of 7 tera electronvolts (TeV or 1012 eV).

<span class="mw-page-title-main">Canadian Light Source</span> Synchrotron light source facility in Saskatoon, Canada

The Canadian Light Source (CLS) is Canada's national synchrotron light source facility, located on the grounds of the University of Saskatchewan in Saskatoon, Saskatchewan, Canada. The CLS has a third-generation 2.9 GeV storage ring, and the building occupies a footprint the size of a Canadian football field. It opened in 2004 after a 30-year campaign by the Canadian scientific community to establish a synchrotron radiation facility in Canada. It has expanded both its complement of beamlines and its building in two phases since opening. As a national synchrotron facility with over 1000 individual users, it hosts scientists from all regions of Canada and around 20 other countries. Research at the CLS has ranged from viruses to superconductors to dinosaurs, and it has also been noted for its industrial science and its high school education programs.

<span class="mw-page-title-main">KEK</span> Japanese high-energy physics organization

The High Energy Accelerator Research Organization, known as KEK, is a Japanese organization whose purpose is to operate the largest particle physics laboratory in Japan, situated in Tsukuba, Ibaraki prefecture. It was established in 1997. The term "KEK" is also used to refer to the laboratory itself, which employs approximately 695 employees. KEK's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics, material science, structural biology, radiation science, computing science, nuclear transmutation and so on. Numerous experiments have been constructed at KEK by the internal and international collaborations that have made use of them. Makoto Kobayashi, emeritus professor at KEK, is known globally for his work on CP-violation, and was awarded the 2008 Nobel Prize in Physics.

<span class="mw-page-title-main">Stanford Synchrotron Radiation Lightsource</span> Research center at Stanford University

The Stanford Synchrotron Radiation Lightsource, a division of SLAC National Accelerator Laboratory, is operated by Stanford University for the Department of Energy. SSRL is a National User Facility which provides synchrotron radiation, a name given to electromagnetic radiation in the x-ray, ultraviolet, visible and infrared realms produced by electrons circulating in a storage ring at nearly the speed of light. The extremely bright light that is produced can be used to investigate various forms of matter ranging from objects of atomic and molecular size to man-made materials with unusual properties. The obtained information and knowledge is of great value to society, with impact in areas such as the environment, future technologies, health, biology, basic research, and education.

<span class="mw-page-title-main">Proton Synchrotron</span> CERNs first synchrotron accelerator

The Proton Synchrotron is a particle accelerator at CERN. It is CERN's first synchrotron, beginning its operation in 1959. For a brief period the PS was the world's highest energy particle accelerator. It has since served as a pre-accelerator for the Intersecting Storage Rings (ISR) and the Super Proton Synchrotron (SPS), and is currently part of the Large Hadron Collider (LHC) accelerator complex. In addition to protons, PS has accelerated alpha particles, oxygen and sulfur nuclei, electrons, positrons, and antiprotons.

The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) in Upton, New York was a national user research facility funded by the U.S. Department of Energy (DOE). Built from 1978 through 1984, and officially shut down on September 30, 2014, the NSLS was considered a second-generation synchrotron.

<span class="mw-page-title-main">Advanced Light Source</span> Synchrotron radiation facility

The Advanced Light Source (ALS) is a research facility at Lawrence Berkeley National Laboratory in Berkeley, California. One of the world's brightest sources of ultraviolet and soft x-ray light, the ALS is the first "third-generation" synchrotron light source in its energy range, providing multiple extremely bright sources of intense and coherent short-wavelength light for use in scientific experiments by researchers from around the world. It is funded by the US Department of Energy (DOE) and operated by the University of California. In June 2018, Stephen Kevan became the director of the ALS.

<span class="mw-page-title-main">Proton Synchrotron Booster</span> CERN particle accelerator

The Proton Synchrotron Booster (PSB) is the first and smallest circular proton accelerator in the accelerator chain at the CERN injection complex, which also provides beams to the Large Hadron Collider. It contains four superimposed rings with a radius of 25 meters, which receive protons with an energy of 160 MeV from the linear accelerator Linac4 and accelerate them up to 2.0 GeV, ready to be injected into the Proton Synchrotron (PS). Before the PSB was built in 1972, Linac 1 injected directly into the Proton Synchrotron, but the increased injection energy provided by the booster allowed for more protons to be injected into the PS and a higher luminosity at the end of the accelerator chain.

<span class="mw-page-title-main">ASTRID2</span>

ASTRID2 is a synchrotron light source at the Department of Physics and Astronomy of Aarhus University. ASTRID2 was designed, constructed and is operated by the Centre for Storage Ring Facilities in Aarhus (ISA).

<span class="mw-page-title-main">Swiss Light Source</span> Synchrotron radiation facility at Paul Scherrer Institute in Switzerland

The Swiss Light Source (SLS) is a synchrotron located at the Paul Scherrer Institute (PSI) in Switzerland for producing electromagnetic radiation of high brightness. Planning started in 1991, the project was approved in 1997, and first light from the storage ring was seen at December 15, 2000. The experimental program started in June 2001 and it is used for research in materials science, biology and chemistry.

<span class="mw-page-title-main">European XFEL</span>

The European X-Ray Free-Electron Laser Facility is an X-ray research laser facility commissioned during 2017. The first laser pulses were produced in May 2017 and the facility started user operation in September 2017. The international project with twelve participating countries; nine shareholders at the time of commissioning, later joined by three other partners, is located in the German federal states of Hamburg and Schleswig-Holstein. A free-electron laser generates high-intensity electromagnetic radiation by accelerating electrons to relativistic speeds and directing them through special magnetic structures. The European XFEL is constructed such that the electrons produce X-ray light in synchronisation, resulting in high-intensity X-ray pulses with the properties of laser light and at intensities much brighter than those produced by conventional synchrotron light sources.

<span class="mw-page-title-main">MAX IV Laboratory</span> Synchrotron radiation facility at Lund University in Sweden

MAX IV is a next-generation synchrotron radiation facility in Lund, Sweden. Its design and planning has been carried out within the Swedish national laboratory, MAX-lab, which up until 2015 operated three storage rings for synchrotron radiation research: MAX I, MAX II and MAX III. MAX-lab supported about 1000 users from over 30 countries annually. The facility operated 14 beamlines with a total of 19 independent experimental stations, supporting a wide range of experimental techniques such as macromolecular crystallography, electron spectroscopy, nanolithography and production of tagged photons for photo-nuclear experiments. The facility closed on 13 December 2015 in preparation for MAX IV.

<span class="mw-page-title-main">Particle accelerator</span> Research apparatus for particle physics

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.

<span class="mw-page-title-main">National Synchrotron Light Source II</span> Research and Development Facility in New York, United States

The National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL) in Upton, New York is a national user research facility funded primarily by the U.S. Department of Energy's (DOE) Office of Science. NSLS-II is one of the world's most advanced synchrotron light sources, designed to produce x-rays 10,000 times brighter than BNL's original light source, the National Synchrotron Light Source (NSLS). NSLS-II supports basic and applied research in energy security, advanced materials synthesis and manufacturing, environment, and human health.

An energy recovery linac (ERL) is a type of linear particle accelerator that provides a beam of electrons used to produce x-rays by synchrotron radiation. First proposed in 1965 the idea gained interest since the early 2000s.

<span class="mw-page-title-main">Solaris (synchrotron)</span>

SOLARIS is the only synchrotron in Central-Eastern Europe. Built in Poland in 2015, under the auspices of the Jagiellonian University, it is located on the Campus of the 600th Anniversary of the Jagiellonian University Revival, in the southern part of Kraków. It is the central facility of the National Synchrotron Radiation Centre SOLARIS.

References

  1. Official Opening webcast timetable & archive site, 31 July 2007
  2. "Scientists to unveil monster synchrotron", ABC News, 31 July 2007
  3. "Case Studies". industry.synchrotron.org.au. Archived from the original on 3 March 2016. Retrieved 4 November 2015.
  4. "Australian Synchrotron: 2015 Annual Report" (PDF). Australian Synchrotron. Retrieved 23 March 2016.
  5. "Synchrotron light to shine brighter over next decade". 7 December 2015.
  6. Australian Nuclear Science and Technology Organisation
  7. "Australia nuclear facility installs massive rooftop solar system to save $2 million". RenewEconomy. 7 March 2024.
  8. Mcginn, Christine (30 March 2020). "Aussie experts 'unlocking' COVID-19 cure". The Australian. Retrieved 31 March 2020.
  9. "Australian Synchrotron Machine Fact sheet". Archived from the original on 3 July 2014.

37°54′51″S145°08′34″E / 37.914092°S 145.142649°E / -37.914092; 145.142649