Diamond Light Source

Last updated

Diamond Light Source
DiamondLogo.png
Diamond Light Source building - 3338870 ff7a8854.jpg
Diamond Light Source building
Established2001 (2001)
Laboratory type
National scientific research laboratory
Location Chilton, Oxfordshire, United Kingdom, England
51°34′28″N1°18′39″W / 51.57444°N 1.31083°W / 51.57444; -1.31083
Website diamond.ac.uk
Map
Oxfordshire UK location map.svg
Red pog.svg
Location in Oxfordshire

Diamond Light Source (or Diamond) is the UK's national synchrotron light source science facility located at the Harwell Science and Innovation Campus in Oxfordshire.

Contents

Its purpose is to produce intense beams of light whose special characteristics are useful in many areas of scientific research. In particular it can be used to investigate the structure and properties of a wide range of materials from proteins (to provide information for designing new and better drugs), and engineering components (such as a fan blade from an aero-engine [1] ) to conservation of archeological artifacts (for example Henry VIII's flagship the Mary Rose [2] [3] ).

There are more than 50 light sources across the world. [4] With an energy of 3 GeV, Diamond is a medium energy synchrotron currently operating with 32 beamlines.

Design, construction and finance

Diamond Light Source in snow, 2018. Diamond Snow Outside PlateBlur.jpg
Diamond Light Source in snow, 2018.

The Diamond synchrotron is the largest UK-funded scientific facility to be built in the UK since the Nimrod proton synchrotron which was sited at the Rutherford Appleton Laboratory in 1964. Nearby facilities include the ISIS Neutron and Muon Source, the Central Laser Facility, and the laboratories at Harwell and Culham (including the Joint European Torus (JET) project). It replaced the Synchrotron Radiation Source, a second-generation synchrotron at the Daresbury Laboratory in Cheshire.

Diamond produced its first user beam towards the end of January 2007, and was formally opened by Queen Elizabeth II on 19 October 2007. [5] [6]

Construction

A design study during the 1990s was completed in 2001 by scientists at Daresbury and construction began following the creation of the operating company, Diamond Light Source Ltd. [7]

The construction costs of £260m covered the synchrotron building, the accelerators inside it, the first seven experimental stations (beamlines) and the adjacent office block, Diamond House.

Governance

The facility is operated by Diamond Light Source Ltd, [8] a joint venture company established in March 2002. The company receives 86% of its funding from the UK Government via the Science and Technology Facilities Council (STFC) and 14% from the Wellcome Trust.

Synchrotron

Inside the experimental hall Diamond Inside Panorama.jpg
Inside the experimental hall

Diamond generates synchrotron light at wavelengths ranging from X-rays to the far infrared. This is also known as synchrotron radiation and is the electromagnetic radiation emitted by charged particles travelling near the speed of light when their path deviates from a straight line. [9] It is used in a huge variety of experiments to study the structure and behaviour of many different types of matter.

The particles Diamond uses are electrons travelling at an energy of 3 GeV [10] round a 561.6 m circumference storage ring. This is not a true circle, but a 48-sided polygon with a bending magnet at each vertex and straight sections in between. [11] The bending magnets are dipole magnets whose magnetic field deflects the electrons so as to steer them around the ring. As Diamond is a third generation light source[ further explanation needed ] it also uses special arrays of magnets called insertion devices. These cause the electrons to undulate and it is their sudden change of direction that causes the electrons to emit an exceptionally bright beam of electromagnetic radiation, brighter than that of a single bend when traveling through a bending magnet. This is the synchrotron light used for experiments. Some beamlines, however, use light solely from a bending magnet without the need of an insertion device.

The electrons reach this high energy via a series of pre-accelerator stages before being injected into the 3 GeV storage ring:

The Diamond synchrotron is housed in a silver toroidal building of 738 m in circumference, covering an area in excess of 43,300 square metres, or the area of over six football pitches. This contains the storage ring and a number of beamlines, [12] with the linear accelerator and booster synchrotron housed in the centre of the ring. These beamlines are the experimental stations where the synchrotron light's interaction with matter is used for research purposes. Seven beamlines were available when Diamond became operational in 2007, with more coming online as construction continued. As of April 2019 there were 32 beamlines in operation. Diamond is intended ultimately to host about 33 beamlines, supporting the life, physical and environmental sciences.

Diamond is also home to eleven electron microscopes. Nine of these are cryo-electron microscopes specialising in life sciences including two provided for industry use in partnership with Thermo Fisher Scientific; the remaining two microscopes are dedicated to research of advanced materials. [13]

Case studies

See also

Related Research Articles

<span class="mw-page-title-main">DESY</span> German national research center

DESY, short for Deutsches Elektronen-Synchrotron, is a national research centre for fundamental science located in Hamburg and Zeuthen near Berlin in Germany. It operates particle accelerators used to investigate the structure, dynamics and function of matter, and conducts a broad spectrum of interdisciplinary scientific research in four main areas: particle and high energy physics; photon science; astroparticle physics; and the development, construction and operation of particle accelerators. Its name refers to its first project, an electron synchrotron. DESY is publicly financed by the Federal Republic of Germany and the Federal States of Hamburg and Brandenburg and is a member of the Helmholtz Association.

<span class="mw-page-title-main">Synchrotron light source</span> Particle accelerator designed to produce intense x-ray beams

A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam that are needed to stimulate the high energy electrons to emit photons.

<span class="mw-page-title-main">Insertion device</span>

An insertion device (ID) is a component in modern synchrotron light sources, so called because they are "inserted" into accelerator tracks. They are periodic magnetic structures that stimulate highly brilliant, forward-directed synchrotron radiation emission by forcing a stored charged particle beam to perform wiggles, or undulations, as they pass through the device. This motion is caused by the Lorentz force, and it is from this oscillatory motion that we get the names for the two classes of device, which are known as wigglers and undulators. As well as creating a brighter light, some insertion devices enable tuning of the light so that different frequencies can be generated for different applications.

<span class="mw-page-title-main">Synchrotron</span> Type of cyclic particle accelerator

A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the 27-kilometre-circumference (17 mi) Large Hadron Collider (LHC) near Geneva, Switzerland, built in 2008 by the European Organization for Nuclear Research (CERN). It can accelerate beams of protons to an energy of 7 tera electronvolts (TeV or 1012 eV).

<span class="mw-page-title-main">Canadian Light Source</span>

The Canadian Light Source (CLS) is Canada's national synchrotron light source facility, located on the grounds of the University of Saskatchewan in Saskatoon, Saskatchewan, Canada. The CLS has a third-generation 2.9 GeV storage ring, and the building occupies a footprint the size of a Canadian football field. It opened in 2004 after a 30-year campaign by the Canadian scientific community to establish a synchrotron radiation facility in Canada. It has expanded both its complement of beamlines and its building in two phases since opening. As a national synchrotron facility with over 1000 individual users, it hosts scientists from all regions of Canada and around 20 other countries. Research at the CLS has ranged from viruses to superconductors to dinosaurs, and it has also been noted for its industrial science and its high school education programs.

<span class="mw-page-title-main">Stanford Synchrotron Radiation Lightsource</span> Research center at Stanford University

The Stanford Synchrotron Radiation Lightsource, a division of SLAC National Accelerator Laboratory, is operated by Stanford University for the Department of Energy. SSRL is a National User Facility which provides synchrotron radiation, a name given to electromagnetic radiation in the x-ray, ultraviolet, visible and infrared realms produced by electrons circulating in a storage ring at nearly the speed of light. The extremely bright light that is produced can be used to investigate various forms of matter ranging from objects of atomic and molecular size to man-made materials with unusual properties. The obtained information and knowledge is of great value to society, with impact in areas such as the environment, future technologies, health, biology, basic research, and education.

The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) in Upton, New York was a national user research facility funded by the U.S. Department of Energy (DOE). Built from 1978 through 1984, and officially shut down on September 30, 2014, the NSLS was considered a second-generation synchrotron.

<span class="mw-page-title-main">Advanced Light Source</span> Synchrotron radiation facility

The Advanced Light Source (ALS) is a research facility at Lawrence Berkeley National Laboratory in Berkeley, California. One of the world's brightest sources of ultraviolet and soft x-ray light, the ALS is the first "third-generation" synchrotron light source in its energy range, providing multiple extremely bright sources of intense and coherent short-wavelength light for use in scientific experiments by researchers from around the world. It is funded by the US Department of Energy (DOE) and operated by the University of California. In June 2018, Stephen Kevan became the director of the ALS.

The Australian Synchrotron is a 3 GeV national synchrotron radiation facility located in Clayton, in the south-eastern suburbs of Melbourne, Victoria. The facility opened in 2007, and is operated by the Australian Nuclear Science and Technology Organisation.

<span class="mw-page-title-main">ELETTRA</span>

Elettra Sincrotrone Trieste is an international research center located in Basovizza on the outskirts of Trieste, Italy.

<span class="mw-page-title-main">Daresbury Laboratory</span> Laboratory in Halton, Cheshire, UK

Daresbury Laboratory is a scientific research laboratory based at Sci-Tech Daresbury campus near Daresbury in Halton, Cheshire, England. The laboratory began operations in 1962 and was officially opened on 16 June 1967 as the Daresbury Nuclear Physics Laboratory (DNPL) by the then Prime Minister of United Kingdom, Harold Wilson. It was the second national laboratory established by the British National Institute for Research in Nuclear Science, following the Rutherford High Energy Laboratory. It is operated by the Science and Technology Facilities Council, part of UK Research and Innovation. As of 2018, it employs around 300 staff, with Paul Vernon appointed as director in November 2020, taking over from Professor Susan Smith who had been director from 2012.

<span class="mw-page-title-main">ASTRID2</span>

ASTRID2 is a synchrotron light source at the Department of Physics and Astronomy of Aarhus University. ASTRID2 was designed, constructed and is operated by the Centre for Storage Ring Facilities in Aarhus (ISA).

<span class="mw-page-title-main">Swiss Light Source</span> Synchrotron radiation facility at Paul Scherrer Institute in Switzerland

The Swiss Light Source (SLS) is a synchrotron located at the Paul Scherrer Institute (PSI) in Switzerland for producing electromagnetic radiation of high brightness. Planning started in 1991, the project was approved in 1997, and first light from the storage ring was seen at December 15, 2000. The experimental program started in June 2001 and it is used for research in materials science, biology and chemistry.

<span class="mw-page-title-main">Synchrotron Radiation Source</span>

The Synchrotron Radiation Source (SRS) at the Daresbury Laboratory in Cheshire, England was the first second-generation synchrotron radiation source to produce X-rays. The research facility provided synchrotron radiation to a large number of experimental stations and had an operating cost of approximately £20 million per annum.

<span class="mw-page-title-main">MAX IV Laboratory</span> Synchrotron radiation facility at Lund University in Sweden

MAX IV is a next-generation synchrotron radiation facility in Lund, Sweden. Its design and planning has been carried out within the Swedish national laboratory, MAX-lab, which up until 2015 operated three storage rings for synchrotron radiation research: MAX I, MAX II and MAX III. MAX-lab supported about 1000 users from over 30 countries annually. The facility operated 14 beamlines with a total of 19 independent experimental stations, supporting a wide range of experimental techniques such as macromolecular crystallography, electron spectroscopy, nanolithography and production of tagged photons for photo-nuclear experiments. The facility closed on 13 December 2015 in preparation for MAX IV.

<span class="mw-page-title-main">Particle accelerator</span> Research apparatus for particle physics

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.

ANKA is a synchrotron light source facility at the Karlsruhe Institute of Technology (KIT). The KIT runs ANKA as a national synchrotron light source and as a large scale user facility for the international science community. Being a large scale machine of the performance category LK II of the Helmholtz Association, ANKA is part of a national and European infrastructure offering research services to scientific and commercial users for their purposes in research and development. The facility was opened to external users in 2003.

NINA (Northern Institute's Nuclear Accelerator) was a particle accelerator located at Daresbury Laboratory, UK that was used for particle physics and as a source of synchrotron radiation.

The Hiroshima Synchrotron Radiation Center, also known as Hiroshima Synchrotron Orbital Radiation (HiSOR), at Hiroshima University is a national user research facility in Japan. It was founded in 1996 by the University Science Council at Hiroshima University initially as a combined educational and research facility before opening to users in Japan and across the world in 2002. It is the only synchrotron radiation experimental facility located at a national university in Japan. The HiSOR experimental hall contains two undulators that produce light in the ultraviolet to soft x-ray range. A total of 16 beamlines are supported by bending magnet and undulator radiation for use in basic studies of life sciences and physical sciences, especially solid-state physics.

<span class="mw-page-title-main">Solaris (synchrotron)</span>

SOLARIS is the only synchrotron in Central-Eastern Europe. Built in Poland in 2015, under the auspices of the Jagiellonian University, it is located on the Campus of the 600th Anniversary of the Jagiellonian University Revival, in the southern part of Kraków. It is the central facility of the National Synchrotron Radiation Centre SOLARIS.

References

  1. Diamond and Rolls-Royce shine light on world’s biggest synchrotron stage
  2. High-tech conservation solutions for old warship – Diamond Lights Source
  3. Podcast – Dr Mark Jones from The Mary Rose Trust discusses his research
  4. "Lightsources.org: Light Sources of the World". 2019. Retrieved 5 October 2019.
  5. Diamond News: Her Majesty The Queen Officially Opens Diamond Light Source
  6. "'Super-scope' opens for business". 5 February 2007.
  7. The name DIAMOND was originally conceived by Mike Poole (the originator of the DIAMOND project) and stood as an acronym meaning DIpole And Multipole Output for the Nation at Daresbury. With the location now being Oxfordshire, not Daresbury, the name reflects the synchrotron light being both hard (referring to the "hard" X-ray region of the electromagnetic spectrum) and bright.
  8. Diamond Light Source Ltd Archived 2013-07-07 at the Wayback Machine
  9. Strictly speaking, when they experience an acceleration perpendicular to their direction of travel.
  10. Equivalent to accelerating them through a voltage of 3 billion volts; 1 electronvolt is the energy an electron gains when accelerated by a potential difference of 1 volt.
  11. "Inside Diamond" (PDF). Diamond Light Source. 2015. Archived from the original (PDF) on 20 November 2018. Retrieved 5 October 2019.
  12. "Current list of Diamond Beamlines". Archived from the original on 2 February 2016. Retrieved 9 August 2011.
  13. "Beamline Development and Technical Summary - Diamond Light Source". www.diamond.ac.uk. Retrieved 5 October 2019.
  14. "'Super-scope' to see hidden texts". 13 September 2007.
  15. "Diamond: Unravelling the secrets of ancient parchments". Archived from the original on 8 August 2011. Retrieved 9 August 2011.
  16. Diamond News: X-rays illuminate the mechanism used by HIV to attack human DNA
  17. Maertens, Goedele N.; Hare, Stephen; Cherepanov, Peter (2010). "The mechanism of retroviral integration from X-ray structures of its key intermediates". Nature. 468 (7321): 326–329. Bibcode:2010Natur.468..326M. doi:10.1038/nature09517. PMC   2999894 . PMID   21068843.
  18. Diamond News: Histamine H1 receptor breakthrough heralds improved allergy treatments
  19. Shimamura, Tatsuro (2011). "Structure of the human histamine H1 receptor complex with doxepin". Nature. 475 (7354): 65–70. doi:10.1038/nature10236. PMC   3131495 . PMID   21697825.
  20. "GCRF - START: Synchrotron Techniques for African Research and Technology".
  21. Nicklin, Chris; Stredwick, Rebekka; Sewell, Trevor (2 January 2022). "Synchrotron Techniques for African Research and Technology: A Step-Change in Structural Biology and Energy Materials". Synchrotron Radiation News. 35 (1): 14–19. Bibcode:2022SRNew..35a..14N. doi: 10.1080/08940886.2022.2043684 . ISSN   0894-0886. S2CID   247431515.
  22. Diamond Light Source. "Solution to plastic pollution on the horizon - Diamond Light Source". www.diamond.ac.uk. Retrieved 5 October 2019.
  23. "Worldwide scientific collaboration develops catalysis breakthrough - Diamond Light Source". www.diamond.ac.uk. Retrieved 5 October 2019.
  24. "Synchrotrons on the coronavirus frontline". 2020. Retrieved 3 July 2021.
  25. Laura Geggel (7 February 2024). "Scroll charred in Mount Vesuvius eruption partially deciphered, earning researchers $700,000 prize". livescience.com. Retrieved 8 February 2024.