Cancer Genome Project

Last updated

The Cancer Genome Project is part of the cancer, aging, and somatic mutation research based at the Wellcome Trust Sanger Institute in the United Kingdom. It aims to identify sequence variants/mutations critical in the development of human cancers. Like The Cancer Genome Atlas project within the United States, the Cancer Genome Project represents an effort in the War on Cancer to improve cancer diagnosis, treatment, and prevention through a better understanding of the molecular basis of the disease. The Cancer Genome Project was launched by Michael Stratton in 2000, and Peter Campbell is now the group leader of the project. The project works to combine knowledge of the human genome sequence with high throughput mutation detection techniques. [1]

Contents

The project operates within the scope of the International Cancer Genome Consortium, working with the other participating organizations and countries to build a database of genomic changes present in different types of cancer. [2] The somatic mutation information gathered by the project can be located in the COSMIC database. The Wellcome Trust Sanger Institute's project currently has several internal partners that each focus on different types of cancer and mutagenesis utilizing different methods. [1] [3] Research goes beyond just sequencing to include therapeutic biomarker discoveries made utilizing bioinformatics programs. Among these discoveries are drug sensitivity biomarkers and inhibitor biomarkers. These discoveries paired with the evolution of DNA sequencing technologies to next-generation sequencing techniques, are important in potential disease treatment and may even help lead to more personalized medicine for cancer patients. [4] [5]

Goals

The goals of the project are to help sequence and catalog different cancer genomes. Beyond just sequencing the project's internal partners each have different areas of focus that will assist in the project's overall goal of determining unique ways for early detection of cancer, better prevention, and improved treatment for patients. [1]

Partners

The following groups are internal partners at the Wellcome Trust Sanger Institute with labs involved with the Cancer Genome Project that are each carrying out different areas of research involving cancer genomics, other diseases, and therapy improvements for both of the aforementioned.[ citation needed ]

Garnett Group

The Garnett group is headed by Mathew Garnett. They work to improve current cancer therapies by determining how alterations in the DNA of cells results in cancer and the implications this has involving patient responses to therapy and its potential improvement. The current research being carried out by the group includes the genomics of drug sensitivity, mapping synthetic-lethal dependencies in cancer cells, a new generation of organoid cancer models, and precision organoid models to study cancer gene function. [1] [6]

Jackson Group

The Jackson group is led by Steve Jackson, and their research focuses on how cells utilize DNA-damage response (DDR) to discover and mend damaged cellular DNA. The research they are conducting have large implications involving diseases that result from loss of function of the DDR system, such as cancer, neurodegenerative diseases, infertility, immunodeficiency, and premature aging. [1] [7]

Liu Group

Pentao Liu leads the Liu group, which utilizes genetics, genomics, and cell biology in mice to study the role of gene functions in the development of normal cells and tissues as well as the development of various diseased cells and tissue, including cancer. The group invests a large interest in lineage choice, stem cell self-renewal, and differentiation, which would have implications in early detection, prevention, and therapy options for cancer and other genetic diseases. [1] [8]

McDermott Group

Ultan McDermott heads the McDermott Group. The group utilizes next-generation sequencing technologies, genetic screens, and bioinformatics to increase the knowledge of the effect that cancer genomes have on drug sensitivity and resistance in relation to patients. The different types of genetic screens being used include CRISPR, chemical mutagenesis, and RNAi. The main areas of focus by the group involve the pharmacogenomics of cancer and genetic screens to build a reserve of drug resistances in cancer. [1] [9]

Nik-Zainal Group

The leader of the Nik-Zainal group is Serena Nik-Zainal. The group uses computational methods to identify the unique signature of mutagenesis in somatic cells to help increase the understanding of how mutations in DNA contribute to aging and cancer. As more cancer genomes are sequenced the information the group generates will encompass a more robust collection, allowing for understanding of how mutations lead to different types and even subtypes of cancer. [1] [10]

Vassiliou Group

The Vassiliou group is led by George Vassiliou, and they focus on hematological cancer. The group studies how different genes and their pathways assist in the evolution of blood cancers, with an ultimate goal of developing treatment that will increase the quality and length of life of patients. [1] [11]

Voet Group

Thierry Voet leads the Voet group. The group utilizes single cell genome variants and its transcribed RNA to study the rate of mutation, genomic instability in gametogenesis and embryogenesis, and the effects of cellular heterogeneity on health and disease. [1] [12]

Research

In an attempt to better understand the mechanics of the mutations that lead to the development of cancer the Nik-Zainal group carried out a study that involved the cataloging of the somatic mutations for 21 different breast cancers. The group then utilized mathematical methods to help determine the unique mutational signatures of the underlying processes leading to the evolution from healthy to diseased tissue for each of the sampled cancers. The results showed that the mutations included several single and double nucleotide substitutions that were able to be differentiated. The unique mutations for each cancer allowed for the 21 samples to be categorized based on type and subtype of cancer, showing a relationship between mutations and the type of resulting cancer. While the group was able to identify these mutations they were unable to determine the underlying mechanisms resulting in them. [10]

The McDermott group in participation with other labs worked to find new treatment possibilities for acute myeloid leukemia (AML), an aggressive cancer with a poor prognosis. They accomplished this by designing a CRISPR genome wide screening tool to locate areas in the genome that would be more susceptible to treatment in the AML cells. The research identified 492 essential genes to the function of the AML cells that would be accessible to being therapeutic targets. The group validated the obtained results by genetic and pharmacological inhibition on select genes. Inhibition of one of the selected genes, KAT2A, was able to suppress the growth of the AML cells across several genotypes will leaving noncancerous cells undamaged. The results from this study propose several promising therapeutic options for AML that will need to farther investigated. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Gene therapy</span> Medical field

Gene therapy is a medical technology that aims to produce a therapeutic effect through the manipulation of gene expression or through altering the biological properties of living cells.

<span class="mw-page-title-main">Mutation</span> Alteration in the nucleotide sequence of a genome

In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosis, or meiosis or other types of damage to DNA, which then may undergo error-prone repair, cause an error during other forms of repair, or cause an error during replication. Mutations may also result from insertion or deletion of segments of DNA due to mobile genetic elements.

<span class="mw-page-title-main">Molecular genetics</span> Scientific study of genes at the molecular level

Molecular genetics is a branch of biology that addresses how differences in the structures or expression of DNA molecules manifests as variation among organisms. Molecular genetics often applies an "investigative approach" to determine the structure and/or function of genes in an organism's genome using genetic screens. 

A genetic screen or mutagenesis screen is an experimental technique used to identify and select individuals who possess a phenotype of interest in a mutagenized population. Hence a genetic screen is a type of phenotypic screen. Genetic screens can provide important information on gene function as well as the molecular events that underlie a biological process or pathway. While genome projects have identified an extensive inventory of genes in many different organisms, genetic screens can provide valuable insight as to how those genes function.

<span class="mw-page-title-main">Functional genomics</span> Field of molecular biology

Functional genomics is a field of molecular biology that attempts to describe gene functions and interactions. Functional genomics make use of the vast data generated by genomic and transcriptomic projects. Functional genomics focuses on the dynamic aspects such as gene transcription, translation, regulation of gene expression and protein–protein interactions, as opposed to the static aspects of the genomic information such as DNA sequence or structures. A key characteristic of functional genomics studies is their genome-wide approach to these questions, generally involving high-throughput methods rather than a more traditional "candidate-gene" approach.

<span class="mw-page-title-main">Germline mutation</span> Inherited genetic variation

A germline mutation, or germinal mutation, is any detectable variation within germ cells. Mutations in these cells are the only mutations that can be passed on to offspring, when either a mutated sperm or oocyte come together to form a zygote. After this fertilization event occurs, germ cells divide rapidly to produce all of the cells in the body, causing this mutation to be present in every somatic and germline cell in the offspring; this is also known as a constitutional mutation. Germline mutation is distinct from somatic mutation.

<span class="mw-page-title-main">Wellcome Sanger Institute</span> British genomics research institute

The Wellcome Sanger Institute, previously known as The Sanger Centre and Wellcome Trust Sanger Institute, is a non-profit British genomics and genetics research institute, primarily funded by the Wellcome Trust.

<span class="mw-page-title-main">Personalized medicine</span> Medical model that tailors medical practices to the individual patient

Personalized medicine, also referred to as precision medicine, is a medical model that separates people into different groups—with medical decisions, practices, interventions and/or products being tailored to the individual patient based on their predicted response or risk of disease. The terms personalized medicine, precision medicine, stratified medicine and P4 medicine are used interchangeably to describe this concept, though some authors and organizations differentiate between these expressions based on particular nuances. P4 is short for "predictive, preventive, personalized and participatory".

<span class="mw-page-title-main">Oncogenomics</span> Sub-field of genomics

Oncogenomics is a sub-field of genomics that characterizes cancer-associated genes. It focuses on genomic, epigenomic and transcript alterations in cancer.

Cancer genome sequencing is the whole genome sequencing of a single, homogeneous or heterogeneous group of cancer cells. It is a biochemical laboratory method for the characterization and identification of the DNA or RNA sequences of cancer cell(s).

<span class="mw-page-title-main">Mutagenesis (molecular biology technique)</span>

In molecular biology, mutagenesis is an important laboratory technique whereby DNA mutations are deliberately engineered to produce libraries of mutant genes, proteins, strains of bacteria, or other genetically modified organisms. The various constituents of a gene, as well as its regulatory elements and its gene products, may be mutated so that the functioning of a genetic locus, process, or product can be examined in detail. The mutation may produce mutant proteins with interesting properties or enhanced or novel functions that may be of commercial use. Mutant strains may also be produced that have practical application or allow the molecular basis of a particular cell function to be investigated.

The Icahn Genomics Institute is a biomedical and genomics research institute within the Icahn School of Medicine at Mount Sinai in New York City. Its aim is to establish a new generation of medicines that can better treat diseases afflicting the world, including cancer, heart disease and infectious pathogens. To do this, the institute’s doctors and scientists are developing and employing new types of treatments that utilize DNA and RNA based therapies, such as CRISPR, siRNA, RNA vaccines, and CAR T cells, and searching for novel drug targets through the use of functional genomics and data science. The institute is led by Brian Brown, a leading expert in gene therapy, genetic engineering, and molecular immunology.

<span class="mw-page-title-main">Circulating tumor DNA</span> Tumor-derived fragmented DNA in the bloodstream

Circulating tumor DNA (ctDNA) is tumor-derived fragmented DNA in the bloodstream that is not associated with cells. ctDNA should not be confused with cell-free DNA (cfDNA), a broader term which describes DNA that is freely circulating in the bloodstream, but is not necessarily of tumor origin. Because ctDNA may reflect the entire tumor genome, it has gained traction for its potential clinical utility; "liquid biopsies" in the form of blood draws may be taken at various time points to monitor tumor progression throughout the treatment regimen.

Mutational signatures are characteristic combinations of mutation types arising from specific mutagenesis processes such as DNA replication infidelity, exogenous and endogenous genotoxin exposures, defective DNA repair pathways, and DNA enzymatic editing.

<span class="mw-page-title-main">CRISPR gene editing</span> Gene editing method

CRISPR gene editing standing for "Clustered Regularly Interspaced Short Palindromic Repeats" is a genetic engineering technique in molecular biology by which the genomes of living organisms may be modified. It is based on a simplified version of the bacterial CRISPR-Cas9 antiviral defense system. By delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be cut at a desired location, allowing existing genes to be removed and/or new ones added in vivo.

Personalized onco-genomics (POG) is the field of oncology and genomics that is focused on using whole genome analysis to make personalized clinical treatment decisions. The program was devised at British Columbia's BC Cancer Agency and is currently being led by Marco Marra and Janessa Laskin. Genome instability has been identified as one of the underlying hallmarks of cancer. The genetic diversity of cancer cells promotes multiple other cancer hallmark functions that help them survive in their microenvironment and eventually metastasise. The pronounced genomic heterogeneity of tumours has led researchers to develop an approach that assesses each individual's cancer to identify targeted therapies that can halt cancer growth. Identification of these "drivers" and corresponding medications used to possibly halt these pathways are important in cancer treatment.

<span class="mw-page-title-main">Cancer pharmacogenomics</span>

Cancer pharmacogenomics is the study of how variances in the genome influences an individual’s response to different cancer drug treatments. It is a subset of the broader field of pharmacogenomics, which is the area of study aimed at understanding how genetic variants influence drug efficacy and toxicity.

Serena Nik-Zainal is a British-Malaysian clinician who is a consultant in clinical genetics and Cancer Research UK advanced clinician scientist at the University of Cambridge. She makes use of genomics for clinical applications. She was awarded the Crick Lecture by the Royal Society in 2021. Serena Nik-Zainal was also recognized as one of the 100 Influential Women in Oncology by OncoDaily.

Personalized genomics is the human genetics-derived study of analyzing and interpreting individualized genetic information by genome sequencing to identify genetic variations compared to the library of known sequences. International genetics communities have spared no effort from the past and have gradually cooperated to prosecute research projects to determine DNA sequences of the human genome using DNA sequencing techniques. The methods that are the most commonly used are whole exome sequencing and whole genome sequencing. Both approaches are used to identify genetic variations. Genome sequencing became more cost-effective over time, and made it applicable in the medical field, allowing scientists to understand which genes are attributed to specific diseases.

Precision diagnostics is a branch of precision medicine that involves precisely managing a patient's healthcare model and diagnosing specific diseases based on customized omics data analytics.

References

  1. 1 2 3 4 5 6 7 8 9 10 http://www.sanger.ac.uk/research/faculty/pcampbell/ Peter Campbell
  2. Covell, David (2015). "Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia". PLOS ONE. 10 (7): e0127433. Bibcode:2015PLoSO..1027433C. doi: 10.1371/journal.pone.0127433 . PMC   4489368 . PMID   26132924.
  3. "The National Cancer Institute, Cancer Research UK, the Wellcome Trust Sanger Institute and the foundation Hubrecht Organoid Technology are to collaborate on the Human Cancer Models Initiative". Chemistry and Industry. 80 (7).
  4. Garnett, Mathew J.; Edelman, Elena J.; Heidorn, Sonja J.; Greenman, Chris D.; Dastur, Anahita; Lau, King Wai; Greninger, Patricia; Thompson, I. Richard; Luo, Xi (29 March 2012). "Systematic identification of genomic markers of drug sensitivity in cancer cells". Nature. 483 (7391): 570–575. Bibcode:2012Natur.483..570G. doi:10.1038/nature11005. ISSN   0028-0836. PMC   3349233 . PMID   22460902.
  5. Garnett, Mathew J.; McDermott, Ultan (1 March 2012). "Exploiting genetic complexity in cancer to improve therapeutic strategies". Drug Discovery Today. Special Issue on Cancer Development. 17 (5–6): 188–193. doi:10.1016/j.drudis.2012.01.025. PMC   3672976 . PMID   22342219.
  6. Yang, Wanjuan; Soares, Jorge; Greninger, Patricia; Edelman, Elena J.; Lightfoot, Howard; Forbes, Simon; Bindal, Nidhi; Beare, Dave; Smith, James A. (1 January 2013). "Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells". Nucleic Acids Research. 41 (D1): D955–D961. doi:10.1093/nar/gks1111. ISSN   0305-1048. PMC   3531057 . PMID   23180760.
  7. Jackson, Stephen P.; Durocher, Daniel (7 March 2013). "Regulation of DNA Damage Responses by Ubiquitin and SUMO". Molecular Cell. 49 (5): 795–807. doi: 10.1016/j.molcel.2013.01.017 . ISSN   1097-2765. PMID   23416108.
  8. Qin, Le; Lai, Yunxin; Zhao, Ruocong; Wei, Xinru; Weng, Jianyu; Lai, Peilong; Li, Baiheng; Lin, Simiao; Wang, Suna (1 January 2017). "Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells". Journal of Hematology & Oncology. 10 (1): 68. doi: 10.1186/s13045-017-0437-8 . ISSN   1756-8722. PMC   5347831 . PMID   28288656.
  9. 1 2 Tzelepis, Konstantinos; Koike-Yusa, Hiroko; Braekeleer, Etienne De; Li, Yilong; Metzakopian, Emmanouil; Dovey, Oliver M.; Mupo, Annalisa; Grinkevich, Vera; Li, Meng (2016). "A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia". Cell Reports. 17 (4): 1193–1205. doi:10.1016/j.celrep.2016.09.079. PMC   5081405 . PMID   27760321.
  10. 1 2 Nik-Zainal, Serena; Alexandrov, Ludmil B.; Wedge, David C.; Van Loo, Peter; Greenman, Christopher D.; Raine, Keiran; Jones, David; Hinton, Jonathan; Marshall, John (25 May 2012). "Mutational Processes Molding the Genomes of 21 Breast Cancers". Cell. 149 (5): 979–993. doi:10.1016/j.cell.2012.04.024. PMC   3414841 . PMID   22608084.
  11. Weber, Julia; Öllinger, Rupert; Friedrich, Mathias; Ehmer, Ursula; Barenboim, Maxim; Steiger, Katja; Heid, Irina; Mueller, Sebastian; Maresch, Roman (10 November 2015). "CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice". Proceedings of the National Academy of Sciences. 112 (45): 13982–13987. Bibcode:2015PNAS..11213982W. doi: 10.1073/pnas.1512392112 . ISSN   0027-8424. PMC   4653208 . PMID   26508638.
  12. Bruin, Elza C. de; McGranahan, Nicholas; Mitter, Richard; Salm, Max; Wedge, David C.; Yates, Lucy; Jamal-Hanjani, Mariam; Shafi, Seema; Murugaesu, Nirupa (10 October 2014). "Spatial and temporal diversity in genomic instability processes defines lung cancer evolution". Science. 346 (6206): 251–256. Bibcode:2014Sci...346..251D. doi:10.1126/science.1253462. ISSN   0036-8075. PMC   4636050 . PMID   25301630.