MAX IV Laboratory

Last updated

MAX IV
Max IV-flygbild 06 september 2014-2.jpg
MAX IV aerial photo from 2014
General properties
Accelerator type Synchrotron light source
Beam type Electrons
Target typeLight source
Beam properties
Maximum energyLarge ring: 3.0 GeV, [1] Small ring: 1.5 GeV [2]
Maximum currentLarge ring: 500 mA, [1] normal current 400 mA, [3] Small ring: 500 mA [2]
Physical properties
LengthLinac: ~300 metres (1,000 ft) [4]
RadiusLinac: 40 millimetres (1.6 in), [4] Storage rings: 15 millimetres (0.59 in) [1]
CircumferenceLarge ring: 528 metres (1,732 ft), [1] Small ring: 96 metres (315 ft) [2]
LocationBrunnshög, Lund, Sweden
Coordinates 55°43′37″N13°13′59″E / 55.727°N 13.233°E / 55.727; 13.233
Institution Lund University
Dates of operation2016 - present [5]
Preceded byMAX III [5]

MAX IV is the world's first 4th generation [6] [7] synchrotron light source facility in Lund, Sweden. [8] Its design [9] [10] and planning was carried out within the Swedish national laboratory, MAX-lab, which up until 2015 operated three storage rings for synchrotron radiation research: MAX I (550 MeV, opened 1986), MAX II (1.5 GeV, opened 1997) and MAX III (700 MeV, opened 2008). MAX-lab supported about 1000 users from over 30 countries annually. The facility operated 14 beamlines with a total of 19 independent experimental stations, supporting a wide range of experimental techniques such as macromolecular crystallography, electron spectroscopy, nanolithography and production of tagged photons for photo-nuclear experiments. The facility closed on 13 December (Saint Lucy's Day) 2015 in preparation for MAX IV.

Contents

On 27 April 2009 the Swedish Ministry of Education and Research, Swedish Research Council, Lund University, Region Skåne and Vinnova, a Swedish government funding agency, decided to fund the research center. [11]

The new laboratories, including two storage rings and a full-energy linac is situated in the northeastern quarter Brunnshög in Lund. The inauguration of MAX IV took place on the 21th of June, the day of summer solstice, 2016. [11] The larger of the two storage rings has a circumference of 528 meters, operates at 3 GeV energy, and has been optimized for high-brightness x-rays. The smaller storage ring (circumference 96 meters) is operated at 1.5 GeV energy and has been optimized for UV. [12] There are also plans for a future expansion of the facility that would add a free-electron laser (FEL) to the facility, but is yet to be funded. [11]

There are currently 16 beamlines at the facility with 10 of them located around the 3 GeV ring, 5 around the 1.5 GeV ring and one at the linac. [13]

History

MAX IV in Lund nearing completion. MAX IV 2013-11-23.jpg
MAX IV in Lund nearing completion.

Design

MAX IV has two electron guns below ground level, one thermionic gun with a hot cathode, and one photogun with a photocathode, both with the RF-range frequency 3 GHz. The thermionic gun sends electrons via the linac into both storage rings [14] for a few seconds once every 10 minutes continuously in order to maintain the total amount of electrons in the storage rings at a constant level. [15] That is called a top-up injector. After half the linac, ~150 metres (500 ft), a diagonal transfer line sends about one quarter of the electrons up to ground level for the small storage ring. After the whole linac, a second diagonal transfer line sends the rest of the electrons up to ground level for the large storage ring. The photogun sends electrons the rest of the time via the linac to the short-pulse facility (SPF) at MAX IV. [16]

The small 1.5 GeV storage ring is called R1 and has a circumference of 96 metres (315 ft). It consists of 12 4.5 metres (15 ft) long rounded corners, called achromats, each followed by a 3.5 metres (~11 ft) long straight section. The achromats are double-bend achromats, meaning that they each contain two pairs of bending magnets. [17] The magnetic field is pointing downwards, pulling the incoming electrons to the right and thus makes the electrons go clockwise in the ring.

Accelerators and beamlines

External relations

Educational outreach

Current and former directors

See also

Related Research Articles

<span class="mw-page-title-main">DESY</span> German national research center

DESY, short for Deutsches Elektronen-Synchrotron, is a national research centre for fundamental science located in Hamburg and Zeuthen near Berlin in Germany. It operates particle accelerators used to investigate the structure, dynamics and function of matter, and conducts a broad spectrum of interdisciplinary scientific research in four main areas: particle and high energy physics; photon science; astroparticle physics; and the development, construction and operation of particle accelerators. Its name refers to its first project, an electron synchrotron. DESY is publicly financed by the Federal Republic of Germany and the Federal States of Hamburg and Brandenburg and is a member of the Helmholtz Association.

<span class="mw-page-title-main">SLAC National Accelerator Laboratory</span> Research center at Stanford University

SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a federally funded research and development center in Menlo Park, California, United States. Founded in 1962, the laboratory is now sponsored by the United States Department of Energy and administrated by Stanford University. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 that could accelerate electrons to energies of 50 GeV.

<span class="mw-page-title-main">Diamond Light Source</span> UKs national synchrotron science facility located in Oxfordshire

Diamond Light Source is the UK's national synchrotron light source science facility located at the Harwell Science and Innovation Campus in Oxfordshire.

<span class="mw-page-title-main">Synchrotron</span> Type of cyclic particle accelerator

A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles.

<span class="mw-page-title-main">Canadian Light Source</span> Synchrotron light source facility in Saskatoon, Canada

The Canadian Light Source (CLS) is Canada's national synchrotron light source facility, located on the grounds of the University of Saskatchewan in Saskatoon, Saskatchewan, Canada. The CLS has a third-generation 2.9 GeV storage ring, and the building occupies a footprint the size of a Canadian football field. It opened in 2004 after a 30-year campaign by the Canadian scientific community to establish a synchrotron radiation facility in Canada. It has expanded both its complement of beamlines and its building in two phases since opening. As a national synchrotron facility with over 1000 individual users, it hosts scientists from all regions of Canada and around 20 other countries. Research at the CLS has ranged from viruses to superconductors to dinosaurs, and it has also been noted for its industrial science and its high school education programs.

<span class="mw-page-title-main">KEK</span> Japanese high-energy physics organization

The High Energy Accelerator Research Organization, known as KEK, is a Japanese organization whose purpose is to operate the largest particle physics laboratory in Japan, situated in Tsukuba, Ibaraki prefecture. It was established in 1997. The term "KEK" is also used to refer to the laboratory itself, which employs approximately 695 employees. KEK's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics, material science, structural biology, radiation science, computing science, nuclear transmutation and so on. Numerous experiments have been constructed at KEK by the internal and international collaborations that have made use of them. Makoto Kobayashi, emeritus professor at KEK, is known globally for his work on CP-violation, and was awarded the 2008 Nobel Prize in Physics.

<span class="mw-page-title-main">Stanford Synchrotron Radiation Lightsource</span> Research center at Stanford University

The Stanford Synchrotron Radiation Lightsource, a division of SLAC National Accelerator Laboratory, is operated by Stanford University for the Department of Energy. SSRL is a National User Facility which provides synchrotron radiation, a name given to electromagnetic radiation in the x-ray, ultraviolet, visible and infrared realms produced by electrons circulating in a storage ring at nearly the speed of light. The extremely bright light that is produced can be used to investigate various forms of matter ranging from objects of atomic and molecular size to man-made materials with unusual properties. The obtained information and knowledge is of great value to society, with impact in areas such as the environment, future technologies, health, biology, basic research, and education.

<span class="mw-page-title-main">Cornell Laboratory for Accelerator-based Sciences and Education</span> Research institute at Cornell University in Ithaca, NY

The Cornell Laboratory for Accelerator-based ScienceS and Education (CLASSE) is a particle accelerator facility located in Wilson Laboratory on the Cornell University campus in Ithaca, New York. CLASSE was formed by merging the Cornell High-Energy Synchrotron Source (CHESS) and the Laboratory for Elementary-Particle Physics (LEPP) in July 2006. Nigel Lockyer is the Director of CLASSE in spring of 2023.

<span class="mw-page-title-main">Proton Synchrotron</span> CERNs first synchrotron accelerator

The Proton Synchrotron is a particle accelerator at CERN. It is CERN's first synchrotron, beginning its operation in 1959. For a brief period the PS was the world's highest energy particle accelerator. It has since served as a pre-accelerator for the Intersecting Storage Rings (ISR) and the Super Proton Synchrotron (SPS), and is currently part of the Large Hadron Collider (LHC) accelerator complex. In addition to protons, PS has accelerated alpha particles, oxygen and sulfur nuclei, electrons, positrons, and antiprotons.

The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) in Upton, New York was a national user research facility funded by the U.S. Department of Energy (DOE). Built from 1978 through 1984, and officially shut down on September 30, 2014, the NSLS was considered a second-generation synchrotron.

The Australian Synchrotron is a 3 GeV national synchrotron radiation facility located in Clayton, in the south-eastern suburbs of Melbourne, Victoria. The facility opened in 2007, and is operated by the Australian Nuclear Science and Technology Organisation.

<span class="mw-page-title-main">Synchrotron Radiation Center</span>

The Synchrotron Radiation Center (SRC), located in Stoughton, Wisconsin and operated by the University of Wisconsin–Madison, was a national synchrotron light source research facility, operating the Aladdin storage ring. From 1968 to 1987 SRC was the home of Tantalus, the first storage ring dedicated to the production of synchrotron radiation.

<span class="mw-page-title-main">Swiss Light Source</span> Synchrotron radiation facility at Paul Scherrer Institute in Switzerland

The Swiss Light Source (SLS) is a synchrotron located at the Paul Scherrer Institute (PSI) in Switzerland for producing electromagnetic radiation of high brightness. Planning started in 1991, the project was approved in 1997, and first light from the storage ring was seen at December 15, 2000. The experimental program started in June 2001 and it is used for research in materials science, biology and chemistry.

<span class="mw-page-title-main">Synchrotron Radiation Source</span>

The Synchrotron Radiation Source (SRS) at the Daresbury Laboratory in Cheshire, England was the first second-generation synchrotron radiation source to produce X-rays. The research facility provided synchrotron radiation to a large number of experimental stations and had an operating cost of approximately £20 million per annum.

<span class="mw-page-title-main">National Synchrotron Radiation Research Center</span>

The National Synchrotron Radiation Research Center synchrotron radiation facility at the Hsinchu Science Park in East District, Hsinchu City, Taiwan as the agency under the Ministry of Science and Technology of the Republic of China.

The Shanghai Synchrotron Radiation Facility (SSRF) is a synchrotron-radiation light source facility in Shanghai, People's Republic of China. Located in an eighteen-hectare campus at Shanghai National Synchrotron Radiation Centre, on the Zhangjiang Hi-Tech Park in the Pudong district.

NINA (Northern Institute's Nuclear Accelerator) was a particle accelerator located at Daresbury Laboratory, UK that was used for particle physics and as a source of synchrotron radiation.

The Hiroshima Synchrotron Radiation Center, also known as Hiroshima Synchrotron Orbital Radiation (HiSOR), at Hiroshima University is a national user research facility in Japan. It was founded in 1996 by the University Science Council at Hiroshima University initially as a combined educational and research facility before opening to users in Japan and across the world in 2002. It is the only synchrotron radiation experimental facility located at a national university in Japan. The HiSOR experimental hall contains two undulators that produce light in the ultraviolet to soft x-ray range. A total of 16 beamlines are supported by bending magnet and undulator radiation for use in basic studies of life sciences and physical sciences, especially solid-state physics.

<span class="mw-page-title-main">Sirius (synchrotron light source)</span> Particle accelerator

Sirius is a diffraction-limited storage ring synchrotron light source at the Brazilian Synchrotron Light Laboratory (LNLS) in Campinas, São Paulo State, Brazil. It has a circumference of 518.4 metres (1,701 ft), a diameter of 165 metres (541 ft), and an electron energy of 3 GeV. The produced synchrotron radiation covers the range of infrared, optical, ultraviolet and X-ray light.

<span class="mw-page-title-main">Solaris (synchrotron)</span>

SOLARIS is a synchrotron light source in the city of Kraków in Poland. It is the only one facility of its kind in Central-Eastern Europe. Built in 2015, under the auspices of the Jagiellonian University, it is located on the Campus of the 600th Anniversary of the Jagiellonian University Revival, in the southern part of the city. It is the central facility of the National Synchrotron Radiation Centre SOLARIS.

References

  1. 1 2 3 4 "3 GeV storage ring". maxiv.lu.se. MAX IV. Retrieved 6 November 2024.
  2. 1 2 3 "1.5 GeV storage ring". maxiv.lu.se. MAX IV. Retrieved 6 July 2022.
  3. "MAX IV Machine Status". maxiv.lu.se. MAX IV. Retrieved 5 November 2024.
  4. 1 2 "Guns and linear accelerator". maxiv.lu.se. MAX IV. Retrieved 6 November 2024.
  5. 1 2 "History". maxiv.lu.se. MAX IV. Archived from the original on 25 November 2020. Retrieved 20 July 2022.
  6. Einfeld, Dieter (2 November 2014). "Multi-bend Achromat Lattices for Storage Ring Light Sources". Synchrotron Radiation News. 27 (6): 4–7. Bibcode:2014SRNew..27....4E. doi:10.1080/08940886.2014.970929. ISSN   0894-0886. S2CID   120677730.
  7. P.F., Tavares; S.C., Leemann; M., Sjöström; Å., Andersson (1 September 2014). "The MAX IV storage ring project". Journal of Synchrotron Radiation. 21 (5): 862–77. doi:10.1107/S1600577514011503. ISSN   1600-5775. PMC   4181638 . PMID   25177978.
  8. "Världens starkaste synkrotron invigs - Umeå universitet". www.teknat.umu.se (in Swedish). 21 June 2016. Archived from the original on 18 September 2016. Retrieved 27 May 2017.
  9. M., Johansson; B., Anderberg; L.-J., Lindgren (1 September 2014). "Magnet design for a low-emittance storage ring". Journal of Synchrotron Radiation. 21 (5): 884–903. doi:10.1107/S160057751401666X. ISSN   1600-5775. PMC   4181640 . PMID   25177980.
  10. E., Al-Dmour; J., Ahlback; D., Einfeld; P.F., Fernandes Tavares; M., Grabski (1 September 2014). "Diffraction-limited storage-ring vacuum technology". Journal of Synchrotron Radiation. 21 (5): 878–83. doi:10.1107/S1600577514010480. ISSN   1600-5775. PMC   4181639 . PMID   25177979.
  11. 1 2 3 "History – MAX IV". www.maxiv.lu.se. Archived from the original on 25 November 2020. Retrieved 27 May 2017.
  12. "Accelerators – MAX IV". www.maxiv.lu.se. Archived from the original on 11 June 2017. Retrieved 27 May 2017.
  13. Rift, Geer (8 November 2021). "Beamlines & accelerators". MAX IV. Retrieved 16 October 2022.
  14. Rift, Geer (25 November 2021). "Guns and linear accelerator". MAX IV. Retrieved 7 November 2024.
  15. "Machine Status – MAX IV". status.maxiv.lu.se. Retrieved 7 November 2024.
  16. Rift, Geer (25 November 2021). "Guns and linear accelerator". MAX IV. Retrieved 7 November 2024.
  17. Rift, Geer (25 November 2021). "1.5 GeV storage ring". MAX IV. Retrieved 21 November 2024.