MAX IV Laboratory

Last updated

MAX IV
Max IV-flygbild 06 september 2014-2.jpg
MAX IV aerial photo from 2014
General properties
Accelerator type Synchrotron light source
Beam type Electrons
Target typeLight source
Beam properties
Maximum energy3 GeV [1]
Maximum current500 mA [1]
Physical properties
Circumference528 metres (1,732 ft) [1]
Location Lund, Sweden
Coordinates 55°43′37″N13°13′59″E / 55.727°N 13.233°E / 55.727; 13.233
Institution Lund University
Dates of operation2016 - present [2]
Preceded byMAX III [2]
MAX IV in Lund nearing completion. MAX IV 2013-11-23.jpg
MAX IV in Lund nearing completion.

MAX IV is a next-generation [3] [4] synchrotron radiation facility in Lund, Sweden. [5] Its design [6] [7] and planning has been carried out within the Swedish national laboratory, MAX-lab, which up until 2015 operated three accelerators for synchrotron radiation research: MAX I (550 MeV, opened 1986), MAX II (1,5 GeV, opened 1997) and MAX III (700 MeV, opened 2008). MAX-lab supported about 1000 users from over 30 countries annually. The facility operated 14 beamlines with a total of 19 independent experimental stations, supporting a wide range of experimental techniques such as macromolecular crystallography, electron spectroscopy, nanolithography and production of tagged photons for photo-nuclear experiments. The facility closed on 13 December (St Lucia dagen) 2015 in preparation for MAX IV.

Contents

On 27 April 2009 the Swedish Ministry of Education and Research, Swedish Research Council, Lund University, Region Skåne and Vinnova, a Swedish government funding agency, decided to fund the research center. [8]

The new laboratories, including two storage rings and a full-energy linac is situated in Brunnshög in Lund North East. The inauguration of MAX IV took place 21 June 2016, on the day of summer solstice. [8] The larger of the two storage rings has a circumference of 528 meters, operates at 3 GeV energy, and has been optimized for high-brightness x-rays. The smaller storage ring (circumference 96 meters) is operated at 1.5 GeV energy and has been optimized for UV. [9] There are also plans for a future expansion of the facility that would add a free-electron laser (FEL) to the facility, but is yet to be funded. [8]

There are currently 16 beamlines at the facility with 10 of them located around the 3 GeV ring, 5 around the 1.5 GeV ring and one at the linear accelerator. [10]

See also

Related Research Articles

<span class="mw-page-title-main">DESY</span> German national research center

DESY, short for Deutsches Elektronen-Synchrotron, is a national research centre for fundamental science located in Hamburg and Zeuthen near Berlin in Germany. It operates particle accelerators used to investigate the structure, dynamics and function of matter, and conducts a broad spectrum of interdisciplinary scientific research in four main areas: particle and high energy physics; photon science; astroparticle physics; and the development, construction and operation of particle accelerators. Its name refers to its first project, an electron synchrotron. DESY is publicly financed by the Federal Republic of Germany and the Federal States of Hamburg and Brandenburg and is a member of the Helmholtz Association of German Research Centres.

<span class="mw-page-title-main">Synchrotron light source</span> Particle accelerator designed to produce intense x-ray beams

A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam that are needed to convert high energy electrons into photons.

<span class="mw-page-title-main">Diamond Light Source</span> UKs national synchrotron science facility located in Oxfordshire

Diamond Light Source is the UK's national synchrotron light source science facility located at the Harwell Science and Innovation Campus in Oxfordshire.

<span class="mw-page-title-main">Synchrotron</span> Type of cyclic particle accelerator

A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the 27-kilometre-circumference (17 mi) Large Hadron Collider (LHC) near Geneva, Switzerland, built in 2008 by the European Organization for Nuclear Research (CERN). It can accelerate beams of protons to an energy of 6.5 tera electronvolts (TeV or 1012 eV).

<span class="mw-page-title-main">Canadian Light Source</span>

The Canadian Light Source (CLS) is Canada's national synchrotron light source facility, located on the grounds of the University of Saskatchewan in Saskatoon, Saskatchewan, Canada. The CLS has a third-generation 2.9 GeV storage ring, and the building occupies a footprint the size of a Canadian football field. It opened in 2004 after a 30-year campaign by the Canadian scientific community to establish a synchrotron radiation facility in Canada. It has expanded both its complement of beamlines and its building in two phases since opening. As a national synchrotron facility with over 1000 individual users, it hosts scientists from all regions of Canada and around 20 other countries. Research at the CLS has ranged from viruses to superconductors to dinosaurs, and it has also been noted for its industrial science and its high school education programs.

<span class="mw-page-title-main">KEK</span> Japanese high-energy physics organization

The High Energy Accelerator Research Organization, known as KEK, is a Japanese organization whose purpose is to operate the largest particle physics laboratory in Japan, situated in Tsukuba, Ibaraki prefecture. It was established in 1997. The term "KEK" is also used to refer to the laboratory itself, which employs approximately 695 employees. KEK's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics, material science, structural biology, radiation science, computing science, nuclear transmutation and so on. Numerous experiments have been constructed at KEK by the internal and international collaborations that have made use of them. Makoto Kobayashi, emeritus professor at KEK, is known globally for his work on CP-violation, and was awarded the 2008 Nobel Prize in Physics.

<span class="mw-page-title-main">Positron–Electron Tandem Ring Accelerator</span> Particle accelerator

The Positron–Electron Tandem Ring Accelerator (PETRA) is one of the particle accelerators at the German national laboratory DESY in Hamburg, Germany. At the time of its construction, it was the biggest storage ring of its kind and still is DESY's second largest synchrotron after HERA. PETRA's original purpose was research in elementary particle physics. From 1978 to 1986, it was used to study electron–positron collisions with the four experiments JADE, MARK-J, PLUTO and TASSO. The discovery of the gluon, the carrier particle of the strong nuclear force, by the TASSO collaboration in 1979 is counted as one of the biggest successes. PETRA was able to accelerate electrons and positrons to 19 GeV.

<span class="mw-page-title-main">Stanford Synchrotron Radiation Lightsource</span>

The Stanford Synchrotron Radiation Lightsource, a division of SLAC National Accelerator Laboratory, is operated by Stanford University for the Department of Energy. SSRL is a National User Facility which provides synchrotron radiation, a name given to electromagnetic radiation in the x-ray, ultraviolet, visible and infrared realms produced by electrons circulating in a storage ring at nearly the speed of light. The extremely bright light that is produced can be used to investigate various forms of matter ranging from objects of atomic and molecular size to man-made materials with unusual properties. The obtained information and knowledge is of great value to society, with impact in areas such as the environment, future technologies, health, biology, basic research, and education.

<span class="mw-page-title-main">Cornell Laboratory for Accelerator-based Sciences and Education</span>

The Cornell Laboratory for Accelerator-based ScienceS and Education (CLASSE) is a particle accelerator facility located in Wilson Laboratory on the Cornell University campus in Ithaca, NY. CLASSE was formed by merging the Cornell High-Energy Synchrotron Source (CHESS) and the Laboratory for Elementary-Particle Physics (LEPP) in July 2006. Nigel Lockyer is the Director of CLASSE in spring of 2023.

The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) in Upton, New York was a national user research facility funded by the U.S. Department of Energy (DOE). Built from 1978 through 1984, and officially shut down on September 30, 2014, the NSLS was considered a second-generation synchrotron.

Australian Nuclear Science and Technology Organisation's Australian Synchrotron is a 3 GeV national synchrotron radiation facility located in Clayton, in the south-eastern suburbs of Melbourne, Victoria, which opened in 2007.

<span class="mw-page-title-main">Synchrotron Radiation Center</span>

The Synchrotron Radiation Center (SRC), located in Stoughton, Wisconsin and operated by the University of Wisconsin–Madison, was a national synchrotron light source research facility, operating the Aladdin storage ring. From 1968 to 1987 SRC was the home of Tantalus, the first storage ring dedicated to the production of synchrotron radiation.

<span class="mw-page-title-main">Synchrotron-Light for Experimental Science and Applications in the Middle East</span>

The Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME) is an independent laboratory located in Allan in the Balqa governorate of Jordan, created under the auspices of UNESCO on 30 May 2002.

<span class="mw-page-title-main">ASTRID2</span>

<span class="mw-page-title-main">European XFEL</span>

NINA (Northern Institute's Nuclear Accelerator) was a particle accelerator located at Daresbury Laboratory, UK that was used for particle physics and as a source of synchrotron radiation.

The Hiroshima Synchrotron Radiation Center, also known as Hiroshima Synchrotron Orbital Radiation (HiSOR), at Hiroshima University is a national user research facility in Japan. It was founded in 1996 by the University Science Council at Hiroshima University initially as a combined educational and research facility before opening to users in Japan and across the world in 2002. It is the only synchrotron radiation experimental facility located at a national university in Japan. The HiSOR experimental hall contains two undulators that produce light in the ultraviolet to soft x-ray range. A total of 16 beamlines are supported by bending magnet and undulator radiation for use in basic studies of life sciences and physical sciences, especially solid-state physics.

Evert Ingolf Lindau is a Swedish physicist and professor emeritus at Lund University and Stanford University and a member of the Royal Swedish Academy of Sciences.

Diffraction-limited storage rings (DLSR), or ultra-low emittance storage rings, are synchrotron light sources where the emittance of the electron-beam in the storage ring is smaller or comparable to the emittance of the x-ray photon beam they produce at the end of their insertion devices. These facilities operate in the soft to hard x-ray range (100eV—100keV) with extremely high brilliance (in the order of 1021—1022 photons/s/mm2/mrad2/0.1%BW)

<span class="mw-page-title-main">DESY (particle accelerator)</span>

The particle accelerator DESY was the first particle accelerator of the DESY research centre in Hamburg and the one that gave the research centre its name. The DESY synchrotron was used for research in particle physics from 1964 to 1978 and served as a pre-accelerator for other accelerator facilities at DESY.

References

  1. 1 2 3 "3 GeV storage ring". maxiv.lu.se. MAX IV. Retrieved 20 July 2022.
  2. 1 2 "History". maxiv.lu.se. MAX IV. Archived from the original on 25 November 2020. Retrieved 20 July 2022.
  3. Einfeld, Dieter (2 November 2014). "Multi-bend Achromat Lattices for Storage Ring Light Sources". Synchrotron Radiation News. 27 (6): 4–7. Bibcode:2014SRNew..27....4E. doi:10.1080/08940886.2014.970929. ISSN   0894-0886. S2CID   120677730.
  4. P.F., Tavares; S.C., Leemann; M., Sjöström; Å., Andersson (1 September 2014). "The MAX IV storage ring project". Journal of Synchrotron Radiation. 21 (5): 862–77. doi:10.1107/S1600577514011503. ISSN   1600-5775. PMC   4181638 . PMID   25177978.
  5. "Världens starkaste synkrotron invigs - Umeå universitet". www.teknat.umu.se (in Swedish). 21 June 2016. Archived from the original on 18 September 2016. Retrieved 27 May 2017.
  6. M., Johansson; B., Anderberg; L.-J., Lindgren (1 September 2014). "Magnet design for a low-emittance storage ring". Journal of Synchrotron Radiation. 21 (5): 884–903. doi:10.1107/S160057751401666X. ISSN   1600-5775. PMC   4181640 . PMID   25177980.
  7. E., Al-Dmour; J., Ahlback; D., Einfeld; P.F., Fernandes Tavares; M., Grabski (1 September 2014). "Diffraction-limited storage-ring vacuum technology". Journal of Synchrotron Radiation. 21 (5): 878–83. doi:10.1107/S1600577514010480. ISSN   1600-5775. PMC   4181639 . PMID   25177979.
  8. 1 2 3 "History – MAX IV". www.maxiv.lu.se. Archived from the original on 25 November 2020. Retrieved 27 May 2017.
  9. "Accelerators – MAX IV". www.maxiv.lu.se. Archived from the original on 11 June 2017. Retrieved 27 May 2017.
  10. Rift, Geer (8 November 2021). "Beamlines & accelerators". MAX IV. Retrieved 16 October 2022.