ISIS Neutron and Muon Source

Last updated
ISIS Neutron and Muon Source logo.png
ISIS Neutron and Muon Source
Location: Rutherford Appleton Laboratory, United Kingdom
Scientific Purpose:Supports national and international community of around 3000 scientists who use neutrons and muons for research in physics, chemistry, materials science, engineering, biology and more.
Organisation:Owned and operated by the Science and Technology Facilities Council part of United Kingdom Research and Innovation. .
Website: isis.stfc.ac.uk

The ISIS Neutron and Muon Source is a pulsed neutron and muon source, established 1984 at the Rutherford Appleton Laboratory of the Science and Technology Facilities Council, on the Harwell Science and Innovation Campus in Oxfordshire, United Kingdom. It uses the techniques of muon spectroscopy and neutron scattering to probe the structure and dynamics of condensed matter on a microscopic scale ranging from the subatomic to the macromolecular.

Contents

Hundreds of experiments are performed every year at the facility by researchers from around the world, in diverse science areas such as physics, chemistry, materials engineering, earth sciences, biology and archaeology. [1]

Background physics

Neutrons are uncharged constituents of atoms and penetrate materials well, deflecting only from the nuclei of atoms. The statistical accumulation of deflected neutrons at different positions beyond the sample can be used to find the structure of a material, and the loss or gain of energy by neutrons can reveal the dynamic behaviour of parts of a sample, for example diffusive processes in solids. At ISIS the neutrons are created by accelerating 'bunches' of protons in a synchrotron, then colliding these with a heavy tungsten metal target, under a constant cooling load to dissipate the heat from the 160 kW proton beam. The impacts cause neutrons to spall off the tungsten atoms, and the neutrons are channelled through guides, or beamlines, to around 20 instruments, each individually optimised for the study of different types of interactions between the neutron beam and matter. The target station and most of the instruments are set in a large hall. Neutrons are a dangerous form of radiation, so the target and beamlines are heavily shielded with concrete.[ citation needed ]

ISIS Neutron and Muon Source produces muons by colliding a fraction of the proton beam with a graphite target, producing pions which decay rapidly into muons, delivered in a spin-polarised beam to sample stations.[ citation needed ]

History

The source was approved in 1977 for the RAL site on the Harwell campus and recycled components from earlier UK science programmes including the accelerator hall which had previously been occupied by the Nimrod accelerator. The first beam was produced in 1984, and the facility was formally opened by the then Prime Minister Margaret Thatcher in October 1985. [2] [1] [3]

The name ISIS is not an acronym: it refers to the Ancient Egyptian goddess and the local name for the River Thames. The name was selected for the official opening of the facility in 1985, prior to this it was known as the SNS, or Spallation Neutron Source. The name was considered appropriate as Isis was a goddess who could restore life to the dead, and ISIS made use of equipment previously constructed for the Nimrod and NINA accelerators.

The second target station was given funding in 2003 by Lord Sainsbury, then science minister, and was completed in 2009, on time and budget, with the opening of 7 instruments. In March 2011, the Science Minister, David Willetts gave a £21 million investment [4] to build 4 new instruments, which are now all in their commissioning phase or fully scheduled instruments. [1]

ISIS Neutron and Muon Source was originally expected to have an operational life of 20 years (1985 to 2005), but its continued success led to a process of refurbishment and further investment, intended to advance the facility and extend the life of ISIS through to 2030. [5]

According to its Annual Report from 2017 to 2018, STFC expects the end of the ISIS pulsed neutron source and the associated Second Target Station to be in 2040 and anticipates decommissioning to take 55 years. The cost of radioactive waste disposal could range between £9 million and £16 million. [6] :51

Science

ISIS Neutron and Muon Source is administered and operated by the Science and Technology Facilities Council (previously CCLRC). The Science and Technology Facilities council, or STFC, is part of UK Research and Innovation. Experimental time is open to academic users from funding countries and is applied for through a twice-yearly 'call for proposals'. Research allocation, or 'beam-time', is allotted to applicants via a peer-review process. Users and their parent institutions do not pay for the running costs of the facility, which are as much as £11,000 per instrument per day. Transport and living costs are covered for those associated with UK Universities. Most users stay in Ridgeway House, a hotel near the site, or at Cosener's House, an STFC-run conference centre in Abingdon. Over 600 experiments by 1600 users are completed every year.

A large number of support staff operate the facility, aid users, and carry out research. The control room is staffed 24 hours a day, every day of the year. Instrument scientists oversee the running of each instrument and liaise with users, and other divisions provide sample environment, data analysis and computing expertise, maintain the accelerator, and run education programmes. ISIS is also one of the few neutron facilities to have a significant detector group that researches and develops new techniques for collecting data.

Among the important and pioneering work carried out was the discovery of the structure of high-temperature superconductors and the solid phase of buckminster-fullerene. Other recent developments can be found here.

Construction for a second target station (TS2) started in 2003, and the first neutrons were delivered to the target on December 14, 2007. [7] TS2 uses low-energy neutrons to study soft condensed matter, biological systems, advanced composites and nanomaterials.

The synchrotron itself hosted the International Muon Ionization Cooling Experiment (MICE) for parasitic running [8] from 2008 to 2018. MICE replaced the earlier HEP Test Beam. [9]

Neutron and muon instruments

The instruments currently at ISIS Neutron and Muon Source are: [10]

Target Station 1

ISIS Neutron and Muon Source experimental hall Target Station 1 ISIS exptal hall.jpg
ISIS Neutron and Muon Source experimental hall Target Station 1
Another view of ISIS Neutron and Muon Source experimental hall Target Station 1 ISIS neutron hall.jpg
Another view of ISIS Neutron and Muon Source experimental hall Target Station 1
ISIS Neutron and Muon Source's second target station. ISIS Neutron and Muon Source Target Station 2 entrance.jpg
ISIS Neutron and Muon Source's second target station.

Target Station 2

The final episode of series 1 of the Sparticle Mystery was filmed on site. The site is also referenced in the book Itch Rocks. [11]

Related Research Articles

<span class="mw-page-title-main">Neutron diffraction</span> Technique to investigate atomic structures using neutron scattering

Neutron diffraction or elastic neutron scattering is the application of neutron scattering to the determination of the atomic and/or magnetic structure of a material. A sample to be examined is placed in a beam of thermal or cold neutrons to obtain a diffraction pattern that provides information of the structure of the material. The technique is similar to X-ray diffraction but due to their different scattering properties, neutrons and X-rays provide complementary information: X-Rays are suited for superficial analysis, strong x-rays from synchrotron radiation are suited for shallow depths or thin specimens, while neutrons having high penetration depth are suited for bulk samples.

<span class="mw-page-title-main">Synchrotron light source</span> Particle accelerator designed to produce intense x-ray beams

A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam that are needed to stimulate the high energy electrons to emit photons.

<span class="mw-page-title-main">Beamline</span> Trajectory of a beam of accelerated particles

In accelerator physics, a beamline refers to the trajectory of the beam of particles, including the overall construction of the path segment along a specific path of an accelerator facility. This part is either

The International Muon Ionization Cooling Experiment is a high energy physics experiment at the Rutherford Appleton Laboratory. The experiment is a recognized CERN experiment (RE11). MICE is designed to demonstrate ionization cooling of muons. This is a process whereby the emittance of a beam is reduced in order to reduce the beam size, so that more muons can be accelerated in smaller aperture accelerators and with fewer focussing magnets. This might enable the construction of high intensity muon accelerators, for example for use as a Neutrino Factory or Muon Collider.

<span class="mw-page-title-main">TRIUMF</span> Particle physics laboratory in Canada

TRIUMF is Canada's national particle accelerator centre. It is considered Canada's premier physics laboratory, and consistently regarded as one of the world's leading subatomic physics research centres. Owned and operated by a consortium of universities, it is on the south campus of one of its founding members, the University of British Columbia in Vancouver, British Columbia, Canada. It houses the world's largest normal conducting cyclotron, a source of 520 MeV protons, which was named an IEEE Milestone in 2010. Its accelerator-focused activities involve particle physics, nuclear physics, nuclear medicine, materials science, and detector and accelerator development.

<span class="mw-page-title-main">Spallation</span> Physical process

Spallation is a process in which fragments of material (spall) are ejected from a body due to impact or stress. In the context of impact mechanics it describes ejection of material from a target during impact by a projectile. In planetary physics, spallation describes meteoritic impacts on a planetary surface and the effects of stellar winds and cosmic rays on planetary atmospheres and surfaces. In the context of mining or geology, spallation can refer to pieces of rock breaking off a rock face due to the internal stresses in the rock; it commonly occurs on mine shaft walls. In the context of anthropology, spallation is a process used to make stone tools such as arrowheads by knapping. In nuclear physics, spallation is the process in which a heavy nucleus emits numerous nucleons as a result of being hit by a high-energy particle, thus greatly reducing its atomic weight. In industrial processes and bioprocessing the loss of tubing material due to the repeated flexing of the tubing within a peristaltic pump is termed spallation.

<span class="mw-page-title-main">Open-pool Australian lightwater reactor</span> Research nuclear reactor in Australia

The Open-pool Australian lightwater reactor (OPAL) is a 20 megawatt (MW) swimming pool nuclear research reactor. Officially opened in April 2007, it replaced the High Flux Australian Reactor as Australia's only nuclear reactor, and is located at the Australian Nuclear Science and Technology Organisation (ANSTO) Research Establishment in Lucas Heights, New South Wales, a suburb of Sydney. Both OPAL and its predecessor have been commonly known simply as the Lucas Heights reactor.

A diffractometer is a measuring instrument for analyzing the structure of a material from the scattering pattern produced when a beam of radiation or particles interacts with it.

<span class="mw-page-title-main">Spallation Neutron Source</span> Accelerator-based neutron source in Oak Ridge, Tennessee, USA

The Spallation Neutron Source (SNS) is an accelerator-based neutron source facility in the U.S. that provides the most intense pulsed neutron beams in the world for scientific research and industrial development. Each year, this facility hosts hundreds of researchers from universities, national laboratories, and industry, who conduct basic and applied research and technology development using neutrons. SNS is part of Oak Ridge National Laboratory, which is managed by UT-Battelle for the United States Department of Energy (DOE). SNS is a DOE Office of Science user facility, and it is open to scientists and researchers from all over the world.

<span class="mw-page-title-main">Powder diffraction</span>

Powder diffraction is a scientific technique using X-ray, neutron, or electron diffraction on powder or microcrystalline samples for structural characterization of materials. An instrument dedicated to performing such powder measurements is called a powder diffractometer.

High-energy X-rays or HEX-rays are very hard X-rays, with typical energies of 80–1000 keV (1 MeV), about one order of magnitude higher than conventional X-rays used for X-ray crystallography. They are produced at modern synchrotron radiation sources such as the beamlines ID15 and BM18 at the European Synchrotron Radiation Facility (ESRF). The main benefit is the deep penetration into matter which makes them a probe for thick samples in physics and materials science and permits an in-air sample environment and operation. Scattering angles are small and diffraction directed forward allows for simple detector setups.

<span class="mw-page-title-main">ALBA (synchrotron)</span>

ALBA is a third-generation synchrotron light source facility located in the Barcelona Synchrotron Park in Cerdanyola del Vallès near Barcelona, in Catalonia (Spain). It was constructed and is operated by CELLS, and co-financed by the Spanish central administration and regional Catalan Government.

<span class="mw-page-title-main">European Spallation Source</span> Pulsed neutron source and a research facility

The European Spallation Source ERIC (ESS) is a multi-disciplinary research facility currently under construction. The ESS is currently under construction in Lund, Sweden, while its Data Management and Software Centre (DMSC) is situated in Copenhagen, Denmark. The 13 European member countries are partners in the construction and operation of ESS. ESS is scheduled to begin its scientific user program in 2023, with the construction phase set to be completed by 2025. ESS will enable scientists to observe and understand basic atomic structures and forces, which is not achievable with other neutron sources in terms of lengths and time scales. The research facility is located close to the Max IV Laboratory, which conducts synchotron radiation research. The construction of the facility began in the summer of 2014 and the first science results are planned for 2023.

J-PARC is a high intensity proton accelerator facility. It is a joint project between KEK and JAEA and is located at the Tokai campus of JAEA. J-PARC aims for the frontier in materials and life sciences, and nuclear and particle physics. J-PARC uses high intensity proton beams to create high intensity secondary beams of neutrons, hadrons, and neutrinos.

<span class="mw-page-title-main">European XFEL</span>

The European X-Ray Free-Electron Laser Facility is an X-ray research laser facility commissioned during 2017. The first laser pulses were produced in May 2017 and the facility started user operation in September 2017. The international project with twelve participating countries; nine shareholders at the time of commissioning, later joined by three other partners, is located in the German federal states of Hamburg and Schleswig-Holstein. A free-electron laser generates high-intensity electromagnetic radiation by accelerating electrons to relativistic speeds and directing them through special magnetic structures. The European XFEL is constructed such that the electrons produce X-ray light in synchronisation, resulting in high-intensity X-ray pulses with the properties of laser light and at intensities much brighter than those produced by conventional synchrotron light sources.

<span class="mw-page-title-main">Los Alamos Neutron Science Center</span> One of the worlds most powerful linear accelerators

The Los Alamos Neutron Science Center (LANSCE), formerly known as the Los Alamos Meson Physics Facility (LAMPF), is one of the world's most powerful linear accelerators. It is located in Los Alamos National Laboratory in New Mexico in Technical Area 53. It was the most powerful linear accelerator in the world when it was opened in June 1972. The technology used in the accelerator was developed under the direction of nuclear physicist Louis Rosen. The facility is capable of accelerating protons up to 800 MeV. Multiple beamlines allow for a variety of experiments to be run at once, and the facility is used for many types of research in materials testing and neutron science. It is also used for medical radioisotope production.

Neutron spectroscopy is a spectroscopic method of measuring atomic and magnetic motions by measuring the kinetic energy of emitted neutrons. The measured neutrons may be emitted directly, or they may scatter off cold matter before reaching the detector. Inelastic neutron scattering observes the change in the energy of the neutron as it scatters from a sample and can be used to probe a wide variety of different physical phenomena such as the motions of atoms, the rotational modes of molecules, sound modes and molecular vibrations, recoil in quantum fluids, magnetic and quantum excitations or even electronic transitions.

<span class="mw-page-title-main">Alan Soper</span>

Alan Kenneth Soper FRS is an STFC Senior Fellow at the ISIS neutron source based at the Rutherford Appleton Laboratory in Oxfordshire.

<span class="mw-page-title-main">Uschi Steigenberger</span> German physicist (1951–2018)

Ursula "Uschi" Steigenberger FInstP was a German condensed matter physicist and director of the ISIS neutron source. She was one of the founders of the Institute of Physics Juno Award.

Zoë Althea Bowden is a British physicist and instrumentation scientist who was involved in the construction of the ISIS Neutron and Muon Source. She was awarded an Order of the British Empire in the 2023 New Year Honours in recognition of her services to science.

References

  1. 1 2 3 "ISIS Neutron and Muon Source Annual Review 2017" (PDF). 18 December 2017. Retrieved 17 April 2018.
  2. D. Findlay. "Linacs at the Rutherford Appleton Laboratory". STFC ePubs. UKRI. Archived (PDF) from the original on 2006-06-29. Retrieved 2021-05-03.
  3. "Commons Hansard". Parliamentary Debates (Hansard) . House of Commons. 14 March 1961. Retrieved 6 June 2009.
  4. "Phase Two instruments" . Retrieved 17 July 2012.
  5. "ISIS Lifetime Impact Study, Volume 1 – Full Report". stfc.ukri.org. November 2016. Retrieved 17 April 2018.
  6. Science and Technology Facilities Council (July 2018). Annual Report and Accounts 2017-18. p. 91. OCLC   1053748833.
  7. ISIS Second Target Station Project Archived September 21, 2005, at the Wayback Machine
  8. Thomason, J.W.G (2019). "The ISIS Spallation Neutron and Muon Source — the first thirty-three years". Nuclear Instruments and Methods in Physics Research. A917 (1): 61–67. Bibcode:2019NIMPA.917...61T. doi: 10.1016/j.nima.2018.11.129 .
  9. McDonald, K. "Report of the International Working Group on Muon Beamlines" (PDF). Muon Collider Targetry and Phase Rotation (NuFACT'01). Archived (PDF) from the original on 2006-09-11. Retrieved 3 May 2021.
  10. "ISIS Instruments Page" . Retrieved 17 April 2018.
  11. Mayo, Simon (2013). Itch Rocks. Doubleday. p. 374. ISBN   9780857531322.

51°34′18″N1°19′12″W / 51.57167°N 1.32000°W / 51.57167; -1.32000