General properties | |
---|---|
Accelerator type | synchrotron |
Beam type | proton, heavy ion |
Target type | Injector for RHIC |
Beam properties | |
Maximum energy | 33 GeV |
Maximum current | 5×1013 protons per pulse |
Physical properties | |
Circumference | 2,650 feet (810 m) |
Location | Upton, New York |
Coordinates | 40°52′27″N72°52′49″W / 40.87430103°N 72.880168°W |
Institution | Brookhaven National Laboratory |
Dates of operation | 1960 - present |
The Alternating Gradient Synchrotron (AGS) is a particle accelerator located at the Brookhaven National Laboratory in Long Island, New York, United States.
The Alternating Gradient Synchrotron was built on the innovative concept of the alternating gradient, or strong-focusing principle, developed by Brookhaven physicists. This new concept in accelerator design allowed scientists to accelerate protons to energies that were previously unachievable. The AGS became the world's premiere accelerator when it reached its design energy of 33 billion electron volts (GeV) on July 29, 1960.
Until 1968, the AGS was the highest energy accelerator in the world, slightly higher than its 28 GeV sister machine, the Proton Synchrotron at CERN, the European laboratory for high-energy physics. While 21st century accelerators can reach energies in the trillion electron volt region, the AGS earned researchers three Nobel Prizes and today serves as the injector for Brookhaven's Relativistic Heavy Ion Collider; it remains the world's highest intensity high-energy proton accelerator.
The AGS Booster, constructed in 1991, further augments the capabilities of the AGS, enabling it to accelerate more intense proton beams and heavy ions such as Gold. Brookhaven's linear particle accelerator (LINAC) provides 200 million electron volt (MeV) protons to the AGS Booster, and the Electron Beam Ion Source (EBIS) and Tandem Van de Graaff accelerators provide other ions to the AGS Booster. The AGS Booster then accelerates these particles for injection into the AGS. The AGS Booster also provides particle beams to the NASA Space Radiation Laboratory.
It became increasingly clear that if further progress was to be made in high energy nuclear physics by experiments using artificially accelerated particles some new principle must be found that would cheapen the cost per GeV. It was lucky for CERN that just at the time a European machine was being considered this new principle was discovered. The problem was simple enough. A cheaper machine could be built if the amplitudes of the free and forced oscillations of the accelerating particles could be decreased in some way so that the vacuum chamber size and the cross-section of the magnet ring could be reduced. The simplest way to reduce the amplitude of the free oscillations is to increase the frequency by increasing the restoring force, and although this is easy to achieve in the vertical direction by increasing the magnetic field gradient, the condition for horizontal stability is violated if n exceeds unity.
The new principle discovered by Christofilos and Courant, Livingston and Snyder increases the frequency of the betatron oscillations by alternating the sign of the gradient of the magnetic field. The structure of the magnet is no longer uniform round the ring with a constant gradient but is broken up into sectors whose gradient is alternatively positive and negative. [1]— J.B. Adams, "The Alternating Gradient Proton Synchrotron"
The work performed at the accelerator led to three Nobel Prizes in Physics:
A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. A cyclotron accelerates charged particles outwards from the center of a flat cylindrical vacuum chamber along a spiral path. The particles are held to a spiral trajectory by a static magnetic field and accelerated by a rapidly varying electric field. Lawrence was awarded the 1939 Nobel Prize in Physics for this invention.
Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island, a hamlet of the Town of Brookhaven. It was formally established in 1947 at the site of Camp Upton, a former U.S. Army base. Located approximately 60 miles east of New York City, it is managed by Stony Brook University and Battelle Memorial Institute.
The Tevatron was a circular particle accelerator in the United States, at the Fermi National Accelerator Laboratory, east of Batavia, Illinois, and was the highest energy particle collider until the Large Hadron Collider (LHC) of the European Organization for Nuclear Research (CERN) was built near Geneva, Switzerland. The Tevatron was a synchrotron that accelerated protons and antiprotons in a 6.28 km (3.90 mi) circumference ring to energies of up to 1 TeV, hence its name. The Tevatron was completed in 1983 at a cost of $120 million and significant upgrade investments were made during its active years of 1983–2011.
A linear particle accelerator is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear beamline. The principles for such machines were proposed by Gustav Ising in 1924, while the first machine that worked was constructed by Rolf Widerøe in 1928 at the RWTH Aachen University. Linacs have many applications: they generate X-rays and high energy electrons for medicinal purposes in radiation therapy, serve as particle injectors for higher-energy accelerators, and are used directly to achieve the highest kinetic energy for light particles for particle physics.
ISABELLE was a 200+200 GeV proton–proton colliding beam particle accelerator partially built by the United States government at Brookhaven National Laboratory in Upton, New York, before it was cancelled in July, 1983.
A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles.
The Relativistic Heavy Ion Collider is the first and one of only two operating heavy-ion colliders, and the only spin-polarized proton collider ever built. Located at Brookhaven National Laboratory (BNL) in Upton, New York, and used by an international team of researchers, it is the only operating particle collider in the US. By using RHIC to collide ions traveling at relativistic speeds, physicists study the primordial form of matter that existed in the universe shortly after the Big Bang. By colliding spin-polarized protons, the spin structure of the proton is explored.
The High Energy Accelerator Research Organization, known as KEK, is a Japanese organization whose purpose is to operate the largest particle physics laboratory in Japan, situated in Tsukuba, Ibaraki prefecture. It was established in 1997. The term "KEK" is also used to refer to the laboratory itself, which employs approximately 695 employees. KEK's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics, material science, structural biology, radiation science, computing science, nuclear transmutation and so on. Numerous experiments have been constructed at KEK by the internal and international collaborations that have made use of them. Makoto Kobayashi, emeritus professor at KEK, is known globally for his work on CP-violation, and was awarded the 2008 Nobel Prize in Physics.
High-energy nuclear physics studies the behavior of nuclear matter in energy regimes typical of high-energy physics. The primary focus of this field is the study of heavy-ion collisions, as compared to lighter atoms in other particle accelerators. At sufficient collision energies, these types of collisions are theorized to produce the quark–gluon plasma. In peripheral nuclear collisions at high energies one expects to obtain information on the electromagnetic production of leptons and mesons that are not accessible in electron–positron colliders due to their much smaller luminosities.
The AWAKE facility at CERN is a proof-of-principle experiment, which investigates wakefield plasma acceleration using a proton bunch as a driver, a world-wide first. It aims to accelerate a low-energy witness bunch of electrons from 15 to 20 MeV to several GeV over a short distance by creating a high acceleration gradient of several GV/m. Particle accelerators currently in use, like CERN's LHC, use standard or superconductive RF-cavities for acceleration, but they are limited to an acceleration gradient in the order of 100 MV/m.
The Bevatron was a particle accelerator — specifically, a weak-focusing proton synchrotron — at Lawrence Berkeley National Laboratory, U.S., which began operating in 1954. The antiproton was discovered there in 1955, resulting in the 1959 Nobel Prize in physics for Emilio Segrè and Owen Chamberlain. It accelerated protons into a fixed target, and was named for its ability to impart energies of billions of eV.
The Proton Synchrotron is a particle accelerator at CERN. It is CERN's first synchrotron, beginning its operation in 1959. For a brief period the PS was the world's highest energy particle accelerator. It has since served as a pre-accelerator for the Intersecting Storage Rings (ISR) and the Super Proton Synchrotron (SPS), and is currently part of the Large Hadron Collider (LHC) accelerator complex. In addition to protons, PS has accelerated alpha particles, oxygen and sulfur nuclei, electrons, positrons, and antiprotons.
The Cosmotron was a particle accelerator, specifically a proton synchrotron, at Brookhaven National Laboratory. Its construction was approved by the U.S. Atomic Energy Commission in 1948, reaching its full energy in 1953, and continuing to run until 1966. It was dismantled in 1969.
The Proton Synchrotron Booster (PSB) is the first and smallest circular proton accelerator in the accelerator chain at the CERN injection complex, which also provides beams to the Large Hadron Collider. It contains four superimposed rings with a radius of 25 meters, which receive protons with an energy of 160 MeV from the linear accelerator Linac4 and accelerate them up to 2.0 GeV, ready to be injected into the Proton Synchrotron (PS). Before the PSB was built in 1972, Linac 1 injected directly into the Proton Synchrotron, but the increased injection energy provided by the booster allowed for more protons to be injected into the PS and a higher luminosity at the end of the accelerator chain.
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies to contain them in well-defined beams. Small accelerators are used for fundamental research in particle physics. Accelerators are also used as synchrotron light sources for the study of condensed matter physics. Smaller particle accelerators are used in a wide variety of applications, including particle therapy for oncological purposes, radioisotope production for medical diagnostics, ion implanters for the manufacture of semiconductors, and accelerator mass spectrometers for measurements of rare isotopes such as radiocarbon.
A Fixed-Field alternating gradient Accelerator is a circular particle accelerator concept that can be characterized by its time-independent magnetic fields and the use of alternating gradient strong focusing.
An energy recovery linac (ERL) is a type of linear particle accelerator that provides a beam of electrons used to produce x-rays by synchrotron radiation. First proposed in 1965 the idea gained interest since the early 2000s.
An electron–ion collider (EIC) is a type of particle accelerator collider designed to collide spin-polarized beams of electrons and ions, in order to study the properties of nuclear matter in detail via deep inelastic scattering. In 2012, a whitepaper was published, proposing the developing and building of an EIC accelerator, and in 2015, the Department of Energy Nuclear Science Advisory Committee (NSAC) named the construction of an electron–ion collider one of the top priorities for the near future in nuclear physics in the United States.
Frank Kenneth Goward was an English scientist, specialized on aerial technologies and particle accelerator development.
John Paul Blewett was a Canadian-American physicist, known as "a key figure in the development of particle accelerators".
{{cite journal}}
: CS1 maint: postscript (link) (quote from p. 359)