XMASS

Last updated

XMASS is a multipurpose physics experiment in Japan. It is a large cryogenic storage dewar, a tank of liquid xenon equipped with photosensors monitoring flashes of light that might be caused by interactions with hypothetical dark matter particles. Unlike a cryogenic particle detector, it operates at temperatures relatively far from absolute zero (specifically, 165 K (−163 °F)). [1] In addition to searching for dark matter, XMASS is also studying neutrinoless double beta decay and solar neutrinos. The project is conducted by a team at Institute for Cosmic Ray Research, University of Tokyo. [2]

Contents

Its results have not confirmed the annual variation seen in some earlier experiments. [3]

History

Construction started in April 2007. The detector was completed in September 2010. Commissioning run was conducted between October 2010 and June 2012. Scientific data taking begun in November 2013. The detector is sometimes called XMASS-I, as it is planned to be superseded by an upgrade called XMASS-1.5 (a 5-ton detector) and eventually XMASS-II (24 ton detector).

The XMASS-I experiment shut down and ceased data taking 20 February 2019.

Results were published in 2021. [4]

Detector

The detector is located 1000m underground in the Kamioka Observatory in Japan. It contains about 800 kg of xenon. [5]

See also

Related Research Articles

Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter.

The Cryogenic Dark Matter Search (CDMS) is a series of experiments designed to directly detect particle dark matter in the form of Weakly Interacting Massive Particles. Using an array of semiconductor detectors at millikelvin temperatures, CDMS has at times set the most sensitive limits on the interactions of WIMP dark matter with terrestrial materials. The first experiment, CDMS I, was run in a tunnel under the Stanford University campus. It was followed by CDMS II experiment in the Soudan Mine. The most recent experiment, SuperCDMS, was located deep underground in the Soudan Mine in northern Minnesota and collected data from 2011 through 2015. The series of experiments continues with SuperCDMS SNOLAB, an experiment located at the SNOLAB facility near Sudbury, Ontario, in Canada that started construction in 2018 and is expected to start data taking in early 2020s.

The XENON dark matter research project, operated at the Italian Gran Sasso National Laboratory, is a deep underground detector facility featuring increasingly ambitious experiments aiming to detect hypothetical dark matter particles. The experiments aim to detect particles in the form of weakly interacting massive particles (WIMPs) by looking for rare nuclear recoil interactions in a liquid xenon target chamber. The current detector consists of a dual phase time projection chamber (TPC).

<span class="mw-page-title-main">Hyper-Kamiokande</span> Neutrino observatory in Japan

Hyper-Kamiokande is a neutrino observatory and experiment under construction in Hida, Gifu and in Tokai, Ibaraki in Japan. It is conducted by the University of Tokyo and the High Energy Accelerator Research Organization (KEK), in collaboration with institutes from over 20 countries across six continents. As a successor of the Super-Kamiokande and T2K experiments, it is designed to search for proton decay and detect neutrinos from natural sources such as the Earth, the atmosphere, the Sun and the cosmos, as well as to study neutrino oscillations of the man-made accelerator neutrino beam. The beginning of data-taking is planned for 2027.

The Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo is a neutrino and gravitational waves laboratory located underground in the Mozumi mine of the Kamioka Mining and Smelting Co. near the Kamioka section of the city of Hida in Gifu Prefecture, Japan. A set of groundbreaking neutrino experiments have taken place at the observatory over the past two decades. All of the experiments have been very large and have contributed substantially to the advancement of particle physics, in particular to the study of neutrino astronomy and neutrino oscillation.

The ArDM Experiment was a particle physics experiment based on a liquid argon detector, aiming at measuring signals from WIMPs, which may constitute the Dark Matter in the universe. Elastic scattering of WIMPs from argon nuclei is measurable by observing free electrons from ionization and photons from scintillation, which are produced by the recoiling nucleus interacting with neighbouring atoms. The ionization and scintillation signals can be measured with dedicated readout techniques, which constituted a fundamental part of the detector.

<span class="mw-page-title-main">Large Underground Xenon experiment</span> Dark matter detection experiment

The Large Underground Xenon experiment (LUX) aimed to directly detect weakly interacting massive particle (WIMP) dark matter interactions with ordinary matter on Earth. Despite the wealth of (gravitational) evidence supporting the existence of non-baryonic dark matter in the Universe, dark matter particles in our galaxy have never been directly detected in an experiment. LUX utilized a 370 kg liquid xenon detection mass in a time-projection chamber (TPC) to identify individual particle interactions, searching for faint dark matter interactions with unprecedented sensitivity.

The DAMA/LIBRA experiment is a particle detector experiment designed to detect dark matter using the direct detection approach, by using a matrix of NaI(Tl) scintillation detectors to detect dark matter particles in the galactic halo. The experiment aims to find an annual modulation of the number of detection events, caused by the variation of the velocity of the detector relative to the dark matter halo as the Earth orbits the Sun. It is located underground at the Laboratori Nazionali del Gran Sasso in Italy.

<span class="mw-page-title-main">EDELWEISS</span>

EDELWEISS is a dark matter search experiment located at the Modane Underground Laboratory in France. The experiment uses cryogenic detectors, measuring both the phonon and ionization signals produced by particle interactions in germanium crystals. This technique allows nuclear recoils events to be distinguished from electron recoil events.

<span class="mw-page-title-main">ZEPLIN-III</span> 2006–2011 dark matter experiment in England

The ZEPLIN-III dark matter experiment attempted to detect galactic WIMPs using a 12 kg liquid xenon target. It operated from 2006 to 2011 at the Boulby Underground Laboratory in Loftus, North Yorkshire. This was the last in a series of xenon-based experiments in the ZEPLIN programme pursued originally by the UK Dark Matter Collaboration (UKDMC). The ZEPLIN-III project was led by Imperial College London and also included the Rutherford Appleton Laboratory and the University of Edinburgh in the UK, as well as LIP-Coimbra in Portugal and ITEP-Moscow in Russia. It ruled out cross-sections for elastic scattering of WIMPs off nucleons above 3.9 × 10−8 pb from the two science runs conducted at Boulby.

Richard Jeremy Gaitskell is a physicist and professor at Brown University and a leading scientist in the search for particle dark matter. He is co-founder, a principal investigator, and co-spokesperson of the Large Underground Xenon (LUX) experiment, which announced world-leading first results on October 30, 2013. He is also a leading investigator in the new LUX-Zeplin (LZ) dark matter experiment.

The Particle and Astrophysical Xenon Detector, or PandaX, is a dark matter detection experiment at China Jinping Underground Laboratory (CJPL) in Sichuan, China. The experiment occupies the deepest underground laboratory in the world, and is among the largest of its kind.

The Cryogenic Low-Energy Astrophysics with Noble liquids (CLEAN) experiment by the DEAP/CLEAN collaboration is searching for dark matter using noble gases at the SNOLAB underground facility. CLEAN has studied neon and argon in the MicroCLEAN prototype, and running the MiniCLEAN detector to test a multi-ton design.

<span class="mw-page-title-main">Elena Aprile</span> Italian experimental particle physicist

Elena Aprile is an Italian-American experimental particle physicist. She has been a professor of physics at Columbia University since 1986. She is the founder and spokesperson of the XENON Dark Matter Experiment. Aprile is well known for her work with noble liquid detectors and for her contributions to particle astrophysics in the search for dark matter.

<span class="mw-page-title-main">LZ experiment</span> Experiment in South Dakota, United States

The LUX-ZEPLIN (LZ) Experiment is a next-generation dark matter direct detection experiment hoping to observe weakly interacting massive particles (WIMP) scatters on nuclei. It was formed in 2012 by combining the LUX and ZEPLIN groups. It is currently a collaboration of 30 institutes in the US, UK, Portugal and South Korea. The experiment is located at about 1,500 meteres under the Sanford Underground Research Facility (SURF) in South Dakota, and is managed by the United States Department of Energy's (DOE) Lawrence Berkeley National Lab.

The CoGeNT experiment has searched for dark matter. It uses a single germanium crystal as a cryogenic detector for WIMP particles. CoGeNT has operated in the Soudan Underground Laboratory since 2009.

Laura Baudis (1969) is a Romanian-born Swiss particle astrophysicist. She is employed as a full professor by the University of Zurich, Switzerland. Her research focuses on dark matter and neutrino physics. She is a member of the science strategy team for XENON as well as the CERN Scientific Policy Committee (2016–18) and the PSI Research Committee for Particle Physics.

<span class="mw-page-title-main">ANAIS-112</span> Spanish dark matter direct detection experiment

ANAIS is a dark matter direct detection experiment located at the Canfranc Underground Laboratory (LSC), in Spain, operated by a team of researchers of the CAPA at the University of Zaragoza.

Direct detection of dark matter is the science of attempting to directly measure dark matter collisions in Earth-based experiments. Modern astrophysical measurements, such as from the Cosmic Microwave Background, strongly indicate that 85% of the matter content of the universe is unaccounted for. Although the existence of dark matter is widely believed, what form it takes or its precise properties has never been determined. There are three main avenues of research to detect dark matter: attempts to make dark matter in accelerators, indirect detection of dark matter annihilation, and direct detection of dark matter in terrestrial labs. The founding principle of direct dark matter detection is that since dark matter is known to exist in the local universe, as the Earth, Solar System, and the Milky Way Galaxy carve out a path through the universe they must intercept dark matter, regardless of what form it takes.

Daniel S. Akerib is an American particle physicist and astrophysicist. He was elected in 2008 a fellow of the American Physical Society (APS).

References

  1. XMASS overview
  2. "実験代表者挨拶 | XMASS". www-sk.icrr.u-tokyo.ac.jp. Retrieved 2024-03-08.
  3. XMASS continues dark matter debate. Oct 2015
  4. Ichimura, Koichi (2021). "Latest results from the XMASS experiment". Proceedings of the 14th Asia-Pacific Physics Conference. Vol. 2319. p. 040011. doi:10.1063/5.0037305. S2CID   234068033.
  5. About XMASS : Detector