Warm dark matter

Last updated

Warm dark matter (WDM) is a hypothesized form of dark matter that has properties intermediate between those of hot dark matter and cold dark matter, causing structure formation to occur bottom-up from above their free-streaming scale, and top-down below their free streaming scale. The most common WDM candidates are sterile neutrinos and gravitinos. The WIMPs (weakly interacting massive particles), when produced non-thermally, could be candidates for warm dark matter. In general, however, the thermally produced WIMPs are cold dark matter candidates.

Contents

keVins and GeVins

One possible WDM candidate particle with a mass of a few keV comes from introducing two new, zero charge, zero lepton number fermions to the Standard Model of Particle Physics: "keV-mass inert fermions" (keVins) and "GeV-mass inert fermions" (GeVins). keVins are overproduced if they reach thermal equilibrium in the early universe, but in some scenarios the entropy production from the decays of unstable heavier particles may suppress their abundance to the correct value. These particles are considered "inert" because they only have suppressed interactions with the Z boson. Sterile neutrinos with masses of a few keV are possible candidates for keVins. At temperatures below the electroweak scale their only interactions with standard model particles are weak interactions due to their mixing with ordinary neutrinos. Due to the smallness of the mixing angle they are not overproduced because they freeze out before reaching thermal equilibrium. Their properties are consistent with astrophysical bounds coming from structure formation and the Pauli principle if their mass is larger than 1-8 keV.

In February 2014, different analyses [1] [2] have extracted from the spectrum of X-ray emissions observed by XMM-Newton, a monochromatic signal around 3.5 keV. This signal is coming from different galaxy clusters (like Perseus and Centaurus) and several scenarios of warm dark matter can justify such a line. We can cite, for example, a 3.5 keV candidate annihilating into 2 photons, [3] or a 7 keV dark matter particle decaying into a photon and a neutrino. [4]

In November 2019, analysis of the interaction of various galactic halo matter on densities and distribution of stellar streams, coming off the satellites of the Milky Way, they were able to constrain minimums of mass for density perturbations by warm dark matter keVins in the GD-1 and Pal 5 streams. This lower limit on the mass of warm dark matter thermal relics mWDM > 4.6 keV; or adding dwarf satellite counts mWDM > 6.3 keV [5]

See also

Related Research Articles

<span class="mw-page-title-main">Dark matter</span> Hypothetical form of matter

Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not absorb, reflect, or emit electromagnetic radiation and is, therefore, difficult to detect. Various astrophysical observations – including gravitational effects which cannot be explained by currently accepted theories of gravity unless more matter is present than can be seen – imply dark matter's presence. For this reason, most experts think that dark matter is abundant in the universe and has had a strong influence on its structure and evolution.

<span class="mw-page-title-main">Neutrino</span> Elementary particle with extremely low mass that interacts only via the weak force and gravity

A neutrino is a fermion that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles excluding massless particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected.

Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter.

In physics, mirror matter, also called shadow matter or Alice matter, is a hypothetical counterpart to ordinary matter.

An Acceleron is a hypothetical subatomic particle postulated to relate the mass of the neutrino to the dark energy conjectured to be responsible for the accelerating expansion of the universe.

In particle physics, a massless particle is an elementary particle whose invariant mass is zero. There are two known gauge boson massless particles: the photon and the gluon. However, gluons are never observed as free particles, since they are confined within hadrons. In addition the Weyl semimetal or Weyl fermion discovered in 2015 is also massless.

Sterile neutrinos are hypothetical particles that are believed to interact only via gravity and not via any of the other fundamental interactions of the Standard Model. The term sterile neutrino is used to distinguish them from the known, ordinary active neutrinos in the Standard Model, which carry an isospin charge of ±+1/ 2  and engage in the weak interaction. The term typically refers to neutrinos with right-handed chirality, which may be inserted into the Standard Model. Particles that possess the quantum numbers of sterile neutrinos and masses great enough such that they do not interfere with the current theory of Big Bang Nucleosynthesis are often called neutral heavy leptons (NHLs) or heavy neutral leptons (HNLs).

<span class="mw-page-title-main">Physics beyond the Standard Model</span> Theories trying to extend known physics

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.

<span class="mw-page-title-main">Majorana fermion</span> Fermion that is its own antiparticle

A Majorana fermion, also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesised by Ettore Majorana in 1937. The term is sometimes used in opposition to a Dirac fermion, which describes fermions that are not their own antiparticles.

Light dark matter, in astronomy and cosmology, are dark matter weakly interacting massive particles (WIMPS) candidates with masses less than 1 GeV. These particles are heavier than warm dark matter and hot dark matter, but are lighter than the traditional forms of cold dark matter, such as Massive Compact Halo Objects (MACHOs). The Lee-Weinberg bound limits the mass of the favored dark matter candidate, WIMPs, that interact via the weak interaction to GeV. This bound arises as follows. The lower the mass of WIMPs is, the lower the annihilation cross section, which is of the order , where m is the WIMP mass and M the mass of the Z-boson. This means that low mass WIMPs, which would be abundantly produced in the early universe, freeze out much earlier and thus at a higher temperature, than higher mass WIMPs. This leads to a higher relic WIMP density. If the mass is lower than GeV the WIMP relic density would overclose the universe.

Primordial black holes are hypothetical black holes that formed soon after the Big Bang. Due to the extreme environment of the newly born universe, extremely dense pockets of sub-atomic matter had been tightly packed to the point of gravitational collapse, creating a primordial black hole that bypasses the density needed to make black holes today due to the densely packed, high-energy state present in the moments just after the Big Bang. Seeing as the creation of primordial black holes pre-date the creation of known stars, they can be formed with less mass than what are known as stellar black holes. Yakov Borisovich Zel'dovich and Igor Dmitriyevich Novikov in 1966 first proposed the existence of such black holes, while the first in-depth study was conducted by Stephen Hawking in 1971. However, their existence has not been proven and remains theoretical.

Manfred Lindner is a German physicist and director at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. He conducts basic research in particle and astro-particle physics.

<span class="mw-page-title-main">CUORE</span>

The Cryogenic Underground Observatory for Rare Events (CUORE[ˈkwɔːre], also Italian for 'heart') is a particle physics facility located underground at the Laboratori Nazionali del Gran Sasso in Assergi, Italy. CUORE was designed primarily as a search for neutrinoless double beta decay in 130Te, a process that has never been observed. It uses tellurium dioxide (TeO2) crystals as both the source of the decay and as bolometers to detect the resulting electrons. CUORE searches for the characteristic signal of neutrinoless double beta decay, a small peak in the observed energy spectrum around the known decay energy; for 130Te, this is Q = 2527.518 ± 0.013 keV. CUORE can also search for signals from dark matter candidates, such as axions and WIMPs.

<span class="mw-page-title-main">Dark photon</span> Hypothetical force carrier particle connected to dark matter

The dark photon is a hypothetical hidden sector particle, proposed as a force carrier similar to the photon of electromagnetism but potentially connected to dark matter. In a minimal scenario, this new force can be introduced by extending the gauge group of the Standard Model of Particle Physics with a new abelian U(1) gauge symmetry. The corresponding new spin-1 gauge boson can then couple very weakly to electrically charged particles through kinetic mixing with the ordinary photon and could thus be detected. The dark photon can also interact with the Standard Model if some of the fermions are charged under the new abelian group. The possible charging arrangements are restricted by a number of consistency requirements such as anomaly cancellation and constraints coming from Yukawa matrices.

Céline Bœhm is a Professor of Particle Physics at the University of Sydney. She works on astroparticle physics and dark matter.

<span class="mw-page-title-main">Dharam Vir Ahluwalia</span> Indian physicist

Dharam Vir Ahluwalia is an Indian-born American theoretical physicist who has made significant contributions to physics of neutrino oscillations, gravitationally induced phases, interface of the gravitational and quantum realms, and mass dimension one fermions. In 2019 he published Mass Dimension One Fermions.

Supernova neutrinos are weakly interactive elementary particles produced during a core-collapse supernova explosion. A massive star collapses at the end of its life, emitting of the order of 1058 neutrinos and antineutrinos in all lepton flavors. The luminosity of different neutrino and antineutrino species are roughly the same. They carry away about 99% of the gravitational energy of the dying star as a burst lasting tens of seconds. The typical supernova neutrino energies are 10–20 MeV. Supernovae are considered the strongest and most frequent source of cosmic neutrinos in the MeV energy range.

Feebly interacting particles (FIPs) are defined by their extremely suppressed interactions with the Standard Model (SM) bosons and/or fermions. FIP candidates could be massive (FIMP) or massless and coupled to the SM particles through minimal coupling strength. The light FIPs are theorized to be dark matter candidates, and, they provides an explanation for the origin of neutrino masses and CP symmetry in strong interactions. These particles are potential thermal dark matter candidates extending the model of weakly interacting massive particles. FIP physics is also known as dark-sector physics. In February 2022 massive gravitons have been proposed as feebly Interacting particles candidates.

Direct detection of dark matter is the science of attempting to directly measure dark matter collisions in Earth-based experiments. Modern astrophysical measurements, such as from the Cosmic Microwave Background, strongly indicate that 85% of the matter content of the universe is unaccounted for. Although the existence of dark matter is widely believed, what form it takes or its precise properties has never been determined. There are three main avenues of research to detect dark matter: attempts to make dark matter in accelerators, indirect detection of dark matter annihilation, and direct detection of dark matter in terrestrial labs. The founding principle of direct dark matter detection is that since dark matter is known to exist in the local universe, as the Earth, Solar System, and the Milky Way Galaxy carve out a path through the universe they must intercept dark matter, regardless of what form it takes.

George Michael Fuller is an American theoretical physicist, known for his research on nuclear astrophysics involving weak interactions, neutrino flavor-mixing, and quark matter, as well as the hypothetical nuclear matter.

References

  1. Bulbul, Esra; Markevitch, Maxim; Foster, Adam; Smith, Randall K.; Loewenstein, Michael; Randall, Scott W. (2014-06-10). "Detection of an Unidentified Emission Line in the Stacked X-Ray Spectrum of Galaxy Clusters". The Astrophysical Journal. 789 (1): 13. arXiv: 1402.2301 . Bibcode:2014ApJ...789...13B. doi: 10.1088/0004-637x/789/1/13 . ISSN   0004-637X.
  2. Boyarsky, A.; Ruchayskiy, O.; Iakubovskyi, D.; Franse, J. (2014-12-15). "Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster". Physical Review Letters. 113 (25): 251301. arXiv: 1402.4119 . Bibcode:2014PhRvL.113y1301B. doi:10.1103/physrevlett.113.251301. ISSN   0031-9007. PMID   25554871. S2CID   21406370.
  3. Dudas, Emilian; Heurtier, Lucien; Mambrini, Yann (2014-08-04). "Generating x-ray lines from annihilating dark matter". Physical Review D. 90 (3): 035002. arXiv: 1404.1927 . Bibcode:2014PhRvD..90c5002D. doi:10.1103/physrevd.90.035002. ISSN   1550-7998. S2CID   118573978.
  4. Ishida, Hiroyuki; Jeong, Kwang Sik; Takahashi, Fuminobu (2014). "7 keV sterile neutrino dark matter from split flavor mechanism". Physics Letters B. 732: 196–200. arXiv: 1402.5837 . Bibcode:2014PhLB..732..196I. doi:10.1016/j.physletb.2014.03.044. ISSN   0370-2693. S2CID   119226364.
  5. Banik, Nilianjan; Bovy, Jo; Bertone, Gianfranco; Erkal, Denis; de Boer, T.J.L (2021). "Novel constraints on the particle nature of dark matter from stellar streams". Journal of Cosmology and Astroparticle Physics. 2021 (10): 043. arXiv: 1911.02663 . doi:10.1088/1475-7516/2021/10/043. S2CID   207847306.

Further reading