DEAP (Dark matter Experiment using Argon Pulse-shape discrimination) is a direct dark matter search experiment which uses liquid argon as a target material. DEAP utilizes background discrimination based on the characteristic scintillation pulse-shape of argon. A first-generation detector (DEAP-1) with a 7 kg target mass was operated at Queen's University to test the performance of pulse-shape discrimination at low recoil energies in liquid argon. DEAP-1 was then moved to SNOLAB, 2 km below Earth's surface, in October 2007 and collected data into 2011.
DEAP-3600 was designed with 3600 kg of active liquid argon mass to achieve sensitivity to WIMP-nucleon scattering cross-sections as low as 10−46 cm2 for a dark matter particle mass of 100 GeV/c2. The DEAP-3600 detector finished construction and began data collection in 2016. An incident with the detector forced a short pause in the data collection in 2016. As of 2019, the experiment is collecting data.
To reach even better sensitivity to dark matter, the Global Argon Dark Matter Collaboration [1] was formed with scientists from DEAP, DarkSide, CLEAN and ArDM experiments. A detector with a liquid argon mass above 20 tonnes (DarkSide-20k) is planned for operation at Laboratori Nazionali del Gran Sasso. [2] Research and development efforts are working towards a next generation detector (ARGO) with a multi-hundred tonne liquid argon target mass designed to reach the neutrino floor, planned to operate at SNOLAB due to its extremely low-background radiation environment.
Since liquid argon is a scintillating material a particle interacting with it produces light in proportion to the energy deposited from the incident particle, this is a linear effect for low energies before quenching becomes a major contributing factor. The interaction of a particle with the argon causes ionization and recoiling along the path of interaction. The recoiling argon nuclei undergo recombination or self-trapping, ultimately resulting in the emission of 128nm vacuum ultra-violet (VUV) photons. Additionally liquid argon has the unique property of being transparent to its own scintillation light, this allows for light yields of tens of thousands of photons produced for every MeV of energy deposited.
The elastic scattering of a WIMP dark matter particle with an argon nucleus is expected to cause the nucleus to recoil. This is expected to be a very low energy interaction (keV) and requires a low detection threshold in order to be sensitive. Due to the necessarily low detection threshold, the number of background events detected is very high. The faint signature of a dark matter particle such as a WIMP will be masked by the many different types of possible background events. A technique for identifying these non-dark matter events is pulse shape discrimination (PSD), which characterizes an event based on the timing signature of the scintillation light from liquid argon.
PSD is possible in a liquid argon detector because interactions due to different incident particles such as electrons, high energy photons, alphas, and neutrons create different proportions of excited states of the recoiling argon nuclei, these are known as singlet and triplet states and they decay with characteristic lifetimes of 6 ns and 1300 ns respectively. [3] Interactions from gammas and electrons produce primarily triplet excited states through electronic recoils, while neutron and alpha interactions produce primarily singlet excited states through nuclear recoils. It is expected that WIMP-nucleon interactions also produce a nuclear recoil type signal due to the elastic scattering of the dark matter particle with the argon nucleus.
By using the arrival time distribution of light for an event, it is possible to identify its likely source. This is done quantitatively by measuring the ratio of the light measured by the photo-detectors in a "prompt" window (<60 ns) over the light measured in a "late" window (<10,000 ns). In DEAP this parameter is called Fprompt. Nuclear recoil type events have high Fprompt (~0.7) values while electronic recoil events have a low Fprompt value (~0.3). Due to this separation in Fprompt for WIMP-like (Nuclear Recoil) and background-like (Electronic Recoil) events, it is possible to uniquely identify the most dominant sources of background in the detector. [4]
The most abundant background in DEAP comes from the beta decay of Argon-39 which has an activity of approximately 1 Bq/kg in atmospheric argon. [5] Discrimination of beta and gamma background events from nuclear recoils in the energy region of interest (near 20 keV of electron energy) is required to be better than 1 in 108 to sufficiently suppress these backgrounds for a dark matter search in liquid atmospheric argon.
The first stage of the DEAP project, DEAP-1, was designed in order to characterize several properties of liquid argon, demonstrate pulse-shape discrimination, and refine engineering. This detector was too small to perform dark matter searches. DEAP-1 used 7 kg of liquid argon as a target for WIMP interactions. Two photomultiplier tubes (PMTs) were used to detect the scintillation light produced by a particle interacting with the liquid argon. As the scintillation light produced is of short wavelength (128 nm) a wavelength-shifting film was used to absorb the ultraviolet scintillation light and re-emit in the visible spectrum (440 nm) enabling the light to pass through ordinary windows without any losses and eventually be detected by the PMTs.
DEAP-1 demonstrated good pulse-shape discrimination of backgrounds on the surface and began operation at SNOLAB. The deep underground location reduced unwanted cosmogenic background events. DEAP-1 ran from 2007 to 2011, including two changes in the experimental setup. DEAP-1 characterized background events, determining design improvements needed in DEAP-3600. [6]
The DEAP-3600 detector was designed to use 3600 kg of liquid argon, with a 1000 kg fiducial volume, the remaining volume is used as self-shielding and background veto. This is contained in a ~2 m diameter spherical acrylic vessel, the first of its kind ever created. [7] The acrylic vessel is surrounded by 255 high quantum efficiency photomultiplier tubes (PMTs) to detect the argon scintillation light. The acrylic vessel is housed in a stainless steel shell submerged in a 7.8m diameter shield tank filled with ultra-pure water. The outside of the steel shell has additional 48 veto PMTs to detect Cherenkov radiation produced by incoming cosmic particles, primarily muons.
The materials used in the DEAP detector were required to adhere to strict radio-purity standards to reduce background event contamination. All materials used were assayed to determine levels of radiation present, and inner detector components had strict requirements for radon emanation, which emits alpha radiation from its decay daughters. The inner vessel is coated with wavelength shifting material TPB which was vacuum evaporated onto the surface. [8] TPB is a common wavelength shifting material used in liquid argon and liquid xenon experiments due to its fast re-emission and high light yield, with an emission spectra peaked at 425nm, in the sensitivity region for most PMTs.
The projected sensitivity of DEAP in terms of spin-independent WIMP-nucleus cross-section is 10−46 cm2 at 100 GeV/c2 after three live years of data taking. [6]
Collaborating institutions include:
This collaboration benefits largely from the experience many of the members and institutions gained on the Sudbury Neutrino Observatory (SNO) project, which studied neutrinos, another weakly interacting particle.
After construction was completed, the DEAP-3600 detector started taking commissioning and calibration data in February 2015 with nitrogen gas purge in the detector. [9] The detector fill was completed and data-taking to search for dark matter was started on August 5, 2016. [10] Shortly after the initial fill of the detector with liquid argon, a butyl O-ring seal failed on August 17, 2016 and contaminated the argon with 100 ppm of N2 [7] The detector was then vented and re-filled, but this time to a level of 3300 kg to avoid a re-occurrence of the seal failure: this second fill was completed in November 2016. The first dark matter search results with an exposure of 4.44 live days from the initial fill were published in August 2017, giving a cross-section limit of 1.2×10−44 cm2 for a 100 GeV/c2 WIMP mass. [10]
Improved sensitivity to dark matter was achieved in February 2019, with an analysis of data collected over 231 live days from the second fill in 2016-2017, giving a cross-section limit of 3.9×10−45 cm2 for a 100 GeV/c2 WIMP mass. [11] This updated analysis demonstrated the best performance ever achieved in liquid argon at threshold, for the pulse-shape discrimination technique against beta and gamma backgrounds. The collaboration also developed new techniques to reject rare nuclear recoil backgrounds, using the observed distribution of light in space and time after a scintillation event.
In January 2022 the experiment published its results setting constraints for dark matter with Planck-scale mass with mass between 8.3×106 GeV/c2 and 1.2×1019 GeV/c2 and cross section from 1×10-23 cm2 to 2.4×10-18 cm2. These were the first results for dark matter on this super-heavy mass scale. [12]
The DEAP-3600 experiment is currently (as of June 2024) undergoing upgrades and the team will operate it for another couple of years with even better sensitivity to dark matter. [13]
Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter.
A scintillator is a material that exhibits scintillation, the property of luminescence, when excited by ionizing radiation. Luminescent materials, when struck by an incoming particle, absorb its energy and scintillate. Sometimes, the excited state is metastable, so the relaxation back down from the excited state to lower states is delayed. The process then corresponds to one of two phenomena: delayed fluorescence or phosphorescence. The correspondence depends on the type of transition and hence the wavelength of the emitted optical photon.
The Cryogenic Dark Matter Search (CDMS) is a series of experiments designed to directly detect particle dark matter in the form of Weakly Interacting Massive Particles. Using an array of semiconductor detectors at millikelvin temperatures, CDMS has at times set the most sensitive limits on the interactions of WIMP dark matter with terrestrial materials. The first experiment, CDMS I, was run in a tunnel under the Stanford University campus. It was followed by CDMS II experiment in the Soudan Mine. The most recent experiment, SuperCDMS, was located deep underground in the Soudan Mine in northern Minnesota and collected data from 2011 through 2015. The series of experiments continues with SuperCDMS SNOLAB, an experiment located at the SNOLAB facility near Sudbury, Ontario, in Canada that started construction in 2018 and is expected to start data taking in early 2020s.
The XENON dark matter research project, operated at the Italian Gran Sasso National Laboratory, is a deep underground detector facility featuring increasingly ambitious experiments aiming to detect hypothetical dark matter particles. The experiments aim to detect particles in the form of weakly interacting massive particles (WIMPs) by looking for rare nuclear recoil interactions in a liquid xenon target chamber. The current detector consists of a dual phase time projection chamber (TPC).
SNOLAB is a Canadian underground science laboratory specializing in neutrino and dark matter physics. Located 2 km below the surface in Vale's Creighton nickel mine near Sudbury, Ontario, SNOLAB is an expansion of the existing facilities constructed for the original Sudbury Neutrino Observatory (SNO) solar neutrino experiment.
The ArDM Experiment was a particle physics experiment based on a liquid argon detector, aiming at measuring signals from WIMPs, which may constitute the Dark Matter in the universe. Elastic scattering of WIMPs from argon nuclei is measurable by observing free electrons from ionization and photons from scintillation, which are produced by the recoiling nucleus interacting with neighbouring atoms. The ionization and scintillation signals can be measured with dedicated readout techniques, which constituted a fundamental part of the detector.
PICO is an experiment searching for direct evidence of dark matter using a bubble chamber of chlorofluorocarbon (Freon) as the active mass. It is located at SNOLAB in Canada.
Astroparticle physics, also called particle astrophysics, is a branch of particle physics that studies elementary particles of astrophysical origin and their relation to astrophysics and cosmology. It is a relatively new field of research emerging at the intersection of particle physics, astronomy, astrophysics, detector physics, relativity, solid state physics, and cosmology. Partly motivated by the discovery of neutrino oscillation, the field has undergone rapid development, both theoretically and experimentally, since the early 2000s.
The Large Underground Xenon experiment (LUX) aimed to directly detect weakly interacting massive particle (WIMP) dark matter interactions with ordinary matter on Earth. Despite the wealth of (gravitational) evidence supporting the existence of non-baryonic dark matter in the Universe, dark matter particles in our galaxy have never been directly detected in an experiment. LUX utilized a 370 kg liquid xenon detection mass in a time-projection chamber (TPC) to identify individual particle interactions, searching for faint dark matter interactions with unprecedented sensitivity.
The Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) is a collaboration of European experimental particle physics groups involved in the construction of cryogenic detectors for direct dark matter searches. The participating institutes are the Max Planck Institute for Physics (Munich), Technical University of Munich, University of Tübingen (Germany), University of Oxford, the Comenius University Bratislava (Slovakia) and the Istituto Nazionale di Fisica Nucleare.
The European Underground Rare Event Calorimeter Array (EURECA) is a planned dark matter search experiment using cryogenic detectors and an absorber mass of up to 1 tonne. The project will be built in the Modane Underground Laboratory and will bring together researchers working on the CRESST and EDELWEISS experiments.
EDELWEISS is a dark matter search experiment located at the Modane Underground Laboratory in France. The experiment uses cryogenic detectors, measuring both the phonon and ionization signals produced by particle interactions in germanium crystals. This technique allows nuclear recoils events to be distinguished from electron recoil events.
The DarkSide collaboration is an international affiliation of universities and labs seeking to directly detect dark matter in the form of weakly interacting massive particles (WIMPs). The collaboration is planning, building and operating a series of liquid argon time projection chambers (TPCs) that are employed at the Gran Sasso National Laboratory in Assergi, Italy. The detectors are filled with liquid argon from underground sources in order to exclude the radioactive isotope 39
Ar, which makes up one in every 1015 (quadrillion) atoms in atmospheric argon. The Darkside-10 (DS-10) prototype was tested in 2012, and the Darkside-50 (DS-50) experiment has been operating since 2013. Darkside-20k (DS-20k) with 20 tonnes of liquid argon is being planned as of 2019.
The ZEPLIN-III dark matter experiment attempted to detect galactic WIMPs using a 12 kg liquid xenon target. It operated from 2006 to 2011 at the Boulby Underground Laboratory in Loftus, North Yorkshire. This was the last in a series of xenon-based experiments in the ZEPLIN programme pursued originally by the UK Dark Matter Collaboration (UKDMC). The ZEPLIN-III project was led by Imperial College London and also included the Rutherford Appleton Laboratory and the University of Edinburgh in the UK, as well as LIP-Coimbra in Portugal and ITEP-Moscow in Russia. It ruled out cross-sections for elastic scattering of WIMPs off nucleons above 3.9 × 10−8 pb from the two science runs conducted at Boulby.
The Korea Invisible Mass Search (KIMS), is a South Korean experiment, led by Sun Kee Kim, searching for weakly interacting massive particles (WIMPs), one of the candidates for dark matter. The experiments use CsI(Tl) crystals at Yangyang Underground Laboratory (Y2L), in tunnels from a preexisting underground power plant. KIMS is supported by the Creative Research Initiative program of the Korea Science and Engineering Foundation. It is the first physics experiment located, and largely built, in Korea.
The Cryogenic Low-Energy Astrophysics with Noble liquids (CLEAN) experiment by the DEAP/CLEAN collaboration is searching for dark matter using noble gases at the SNOLAB underground facility. CLEAN has studied neon and argon in the MicroCLEAN prototype, and running the MiniCLEAN detector to test a multi-ton design.
The LUX-ZEPLIN (LZ) Experiment is a next-generation dark matter direct detection experiment hoping to observe weakly interacting massive particles (WIMP) scatters on nuclei. It was formed in 2012 by combining the LUX and ZEPLIN groups. It is currently a collaboration of 30 institutes in the US, UK, Portugal and South Korea. The experiment is located at about 1,500 meteres under the Sanford Underground Research Facility (SURF) in South Dakota, and is managed by the United States Department of Energy's (DOE) Lawrence Berkeley National Lab.
Jocelyn Monroe is an American British experimental particle physicist who is a professor at the University of Oxford. Her research considers the development of novel detectors as part of the search for dark matter. In 2016 she was honoured with the Breakthrough Prize in Fundamental Physics for her work on the Sudbury Neutrino Observatory.
ANAIS is a dark matter direct detection experiment located at the Canfranc Underground Laboratory (LSC), in Spain, operated by a team of researchers of the CAPA at the University of Zaragoza.
Direct detection of dark matter is the science of attempting to directly measure dark matter collisions in Earth-based experiments. Modern astrophysical measurements, such as from the Cosmic Microwave Background, strongly indicate that 85% of the matter content of the universe is unaccounted for. Although the existence of dark matter is widely believed, what form it takes or its precise properties has never been determined. There are three main avenues of research to detect dark matter: attempts to make dark matter in accelerators, indirect detection of dark matter annihilation, and direct detection of dark matter in terrestrial labs. The founding principle of direct dark matter detection is that since dark matter is known to exist in the local universe, as the Earth, Solar System, and the Milky Way Galaxy carve out a path through the universe they must intercept dark matter, regardless of what form it takes.